深度强化学习系列tensorflow2.0自定义loss函数实现policy gradient策略梯度

本文主要是介绍深度强化学习系列tensorflow2.0自定义loss函数实现policy gradient策略梯度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇文章利用tensorflow2.0自定义loss函数实现policy gradient策略梯度,自定义loss=-log(prob) *Vt
现在训练最高分能到193分,但是还是不稳定,在修改中,欢迎一起探讨文章代码也有参考莫烦大佬的代码action_dim = 2 //定义动作
state_dim = 4 //定义状态
env = gym.make('CartPole-v0')
class PGModel(tf.keras.Model):def __init__(self):super().__init__()self.dense1 = layers.Dense(128,input_dim=state_dim,activation='relu')layers.Dropout(0.1)self.all_acts = layers.Dense(units=action_dim)self.x = 0def call(self,inputs):x = self.dense1(inputs)x = self.all_acts(x)self.x = xoutput = tf.nn.softmax(x)return outputclass PG():def __init__(self):self.model = PGModel()def choose_action(self, s):prob = self.model.predict(np.array([s]))[0]#print(prob)return np.random.choice(len(prob),p=prob)def discount_reward(self,rewards,gamma=0.95): #衰减reward 通过最后一步奖励反推真实奖励out = np.zeros_like(rewards)dis_reward = 0for i in reversed(range(len(rewards))):dis_reward = dis_reward + gamma * rewards[i]  # 前一步的reward等于后一步衰减reward加上即时奖励乘以衰减因子out[i] = dis_rewardreturn  out/np.std(out - np.mean(out))def all_actf(self):all_act = self.model.xprint(all_act)return all_actdef reca_batch(self,a_batch):a = a_batchreturn adef def_loss(self,label=reca_batch,logit=all_actf):  //自定义loss函数neg_log_prob = tf.nn.softmax_cross_entropy_with_logits(labels=label,logits=logit)return neg_log_probdef train(self,records): #训练s_batch = np.array([record[0] for record in records]) #取状态,每次batch个状态a_batch = np.array([[1 if record[1]==i else 0 for i in range(action_dim)]for record in records])self.reca_batch(a_batch)prob_batch = self.model.predict(s_batch) * a_batchr_batch = self.discount_reward([record[2] for record in records ])self.model.compile(loss=self.def_loss,optimizer=optimizers.Adam(0.001))self.model.fit(s_batch,prob_batch,sample_weight=r_batch,verbose=1)episodes = 2000
score_list= []
pg = PG()for i in range(episodes):score = 0records = []s = env.reset()while True:a = pg.choose_action(s)#print(a)next_s,r,done,_ = env.step(a)records.append((s, a, r))s = next_sscore += rif done:pg.train(records)score_list.append(score)print("episode:", i, "score:", score, "maxscore:", max(score_list))breakif np.mean(score_list[-10:]) > 195:pg.model.save('CarPoleModel.h5')breakenv.close()

这篇关于深度强化学习系列tensorflow2.0自定义loss函数实现policy gradient策略梯度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/921862

相关文章

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分