vLLM:由伯克利大学LMSYS组织开源的大语言模型高速推理框架-显著提高了大型语言模型(LLM)的服务效率

本文主要是介绍vLLM:由伯克利大学LMSYS组织开源的大语言模型高速推理框架-显著提高了大型语言模型(LLM)的服务效率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

vLLM是一个由伯克利大学LMSYS组织开源的大语言模型高速推理框架,旨在提升实时场景下语言模型服务的吞吐与内存使用效率134。它是一个快速且易于使用的库,能够与HuggingFace无缝集成134。vLLM的核心是PagedAttention算法,这是一种新颖的注意力算法,通过引入操作系统的虚拟内存分页思想,显著提高了大型语言模型(LLM)的服务效率512。

此外,vLLM还支持FastAPI前端,扩展了OpenAI API接口,允许用户为每个请求自定义采样参数1516。

vLLM首次发布于2023年6月20日,并在2024年3月30日发布了0.4.0版本7。它的代码结构清晰,性能优异,因此获得了广泛关注,GitHub上的star数量达到了17k7。vLLM的实现采用了Python/C++/CUDA,这表明它不仅适用于学术研究,也适合在生产环境中部署和使用1719。

vLLM通过其创新的PagedAttention算法和模块化设计思路,有效地解决了大型语言模型在实时服务中的内存管理和吞吐量问题,使其成为了一个强大的工具,用于推动大型语言模型在生产环境中的高效部署和应用2522。

vLLM的PagedAttention算法是如何具体实现的,以及它如何提高大型语言模型的服务效率?

vLLM的PagedAttention算法是一种针对大型语言模型推理过程的优化方案,其核心思想是将每个序列的KV cache(键值缓存)分块处理,每块包含固定数量的token 28。这种设计灵感来源于操作系统中的虚拟内存和分页管理技术,旨在动态地为请求分配KV cache显存,提升显存利用率 30。通过这种方式,PagedAttention算法能够高效地管理attention中缓存的张量,实现了比HuggingFace Transformers高24倍的吞吐量 29。

具体实现方面,PagedAttention算法通过将自注意力机制的计算过程进行优化,利用Python、C++和CUDA等多种编程语言和技术,在源码中实现了这一算法 32。此外,该算法还采用了内存共享机制,极大地降低了复杂采样算法(如ParallelSampling和BeamSearch)的内存开销,使其内存使用量下降了高达55% 35。

通过这些优化措施,PagedAttention算法不仅提高了大型语言模型的服务效率,还解决了GPU显存瓶颈问题,使得在self-attention计算中,计算速度比内存速度快得多的情况得到了改善 36。评估结果表明,vLLM可以将常用的LLM吞吐量提高了2-4倍,在延迟水平上与最先进的系统相当,并且在更长序列、更大模型和更复杂的场景下表现出了优异的性能 37。

vLLM与HuggingFace集成的具体步骤和要求是什么?

vLLM与HuggingFace集成的具体步骤和要求主要包括以下几点:

  1. 模型架构兼容性:如果要集成的模型与vLLM中已有的模型架构相似,那么整个过程会相对简单39。这意味着用户需要先确认目标模型是否与vLLM支持的模型架构兼容。

  2. 信任远程代码:对于不在HuggingFace transformers库中的自定义模型,可以通过设置trust_remote_code=True来启用对远程代码的信任,或者在CLI中使用--trust-remote-code标志40。这一步骤是为了确保vLLM能够安全地执行和使用这些远程模型。

  3. 环境变量配置:为了使用ModelScope中的模型而不是HuggingFace Hub上的模型,需要设置一个环境变量$ export VLLM_USE_MODELSCOPE = True。同时,也需要使用trust_remote_code=True来启用对远程代码的信任45。这表明vLLM提供了灵活性,允许用户根据需要选择不同的模型来源。

  4. 实例化LLM对象:在vLLM框架中,首先需要实例化一个LLM对象。这是开始使用vLLM进行大模型推理和服务的基本步骤44。

  5. 调度策略分配:使用PolicyFactoryget_policy方法为调度策略分配一个实例。这一步骤涉及到如何高效地管理和利用计算资源,以优化推理性能44。

vLLM与HuggingFace集成的过程涉及到模型架构的兼容性检查、远程代码信任的设置、环境变量的配置以及LLM对象的实例化和调度策略的分配。这些步骤和要求共同确保了用户能够在vLLM框架中无缝集成并使用HuggingFace模型,无论是现有的还是自定义的模型394044。

vLLM在内存管理和吞吐量方面相比其他框架有哪些显著优势?

vLLM在内存管理和吞吐量方面相比其他框架具有显著优势。首先,在吞吐量方面,vLLM提供了高达24倍的吞吐量提升,而无需进行任何模型架构的改变48。这一点在多个来源中得到了证实,例如与Hugging Face Transformers(HF)相比,vLLM的吞吐量高出14倍至24倍4951。此外,vLLM的吞吐量也比TGI高出2.2倍至3.5倍4951。

在内存管理方面,vLLM采用了PagedAttention技术,这种技术可以将注意力机制中的键和值存储在不连续的显存空间中,从而减少了显存碎片,提高了显存利用率50。这种内存管理技术使得大型语言模型在推理过程中能够更有效地利用计算资源,提高了推理速度。此外,vLLM的设计使得KV块存储在非连续物理内存中,进一步增加了内存管理的灵活性53。

尽管存在一些竞争框架,如Friendli Engine,它在LLM服务方面表现出色55,但vLLM通过其内部优化,在性能上仍然显着优于竞争对手54。vLLM在内存管理和吞吐量方面的显著优势主要体现在其高吞吐量和高效的内存管理技术上,这些优势使其成为大规模语言模型推理和服务的理想选择。

vLLM支持FastAPI前端的具体实现细节是什么,以及这如何扩展OpenAI API接口?

vLLM支持FastAPI前端的具体实现细节主要体现在以下几个方面:

  1. 服务提供系统:vLLM是一个端到端的服务提供系统,它具备FastAPI前端和基于GPU的推理引擎。这意味

这篇关于vLLM:由伯克利大学LMSYS组织开源的大语言模型高速推理框架-显著提高了大型语言模型(LLM)的服务效率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916749

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言