OpenCV从入门到精通实战(四)——答题卡识别判卷系统

2024-04-19 05:44

本文主要是介绍OpenCV从入门到精通实战(四)——答题卡识别判卷系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于OpenCV的答题卡识别系统,其主要功能是自动读取并评分答题卡上的选择题答案。系统通过图像处理和计算机视觉技术,自动化地完成了从读取图像到输出成绩的整个流程。下面是该系统的主要步骤和实现细节的概述:

1. 导入必要的库

系统首先导入了numpyargparseimutilscv2等Python库。这些库提供了处理图像、解析命令行参数等功能。

# 导入工具包
import numpy as np
import argparse
import imutils
import cv2

2. 参数设置

使用argparse库来处理命令行输入参数,允许用户指定输入图像的路径。

# 设置参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default="images/test_01.png",help="path to the input image")
args = vars(ap.parse_args())

3. 定义答案键

系统中定义了一个答案键(ANSWER_KEY),这是一个字典,用于存储每个问题的正确答案选项

# 正确答案
ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}

以下是针对每个主要步骤的对应代码片段,以及如何实现在上述答题卡识别系统中的功能:

4. 图像预处理

image = cv2.imread(args["image"])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(blurred, 75, 200)

实现细节

  • cv2.imread:加载图像。
  • cv2.cvtColor:将图像从BGR颜色空间转换为灰度。
  • cv2.GaussianBlur:应用高斯模糊,减少噪声。
  • cv2.Canny:执行Canny边缘检测。
    在这里插入图片描述

5. 轮廓检测

cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
docCnt = Noneif len(cnts) > 0:cnts = sorted(cnts, key=cv2.contourArea, reverse=True)for c in cnts:peri = cv2.arcLength(c, True)approx = cv2.approxPolyDP(c, 0.02 * peri, True)if len(approx) == 4:docCnt = approxbreak

实现细节

  • cv2.findContours:查找边缘。
  • sorted:按轮廓面积大小排序。
  • cv2.approxPolyDP:轮廓近似,寻找角点。
    在这里插入图片描述

6. 透视变换

paper = four_point_transform(image, docCnt.reshape(4, 2))
warped = four_point_transform(gray, docCnt.reshape(4, 2))

实现细节

  • 使用自定义函数four_point_transform来执行透视变换,以得到答题卡的顶视图。
    在这里插入图片描述

7. 应用阈值

thresh = cv2.threshold(warped, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]

实现细节

  • cv2.threshold:通过Otsu方法自动确定最优阈值并二值化图像。
    在这里插入图片描述

8. 轮廓再次检测

cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)

实现细节

  • 再次检测二值化图像中的轮廓。
    在这里插入图片描述

9. 筛选与排序

questionCnts = []for c in cnts:(x, y, w, h) = cv2.boundingRect(c)ar = w / float(h)if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:questionCnts.append(c)questionCnts = contours.sort_contours(questionCnts, method="top-to-bottom")[0]

实现细节

  • 筛选形状近似于圆的轮廓,并按从上到下排序。
    在这里插入图片描述

10. 评分逻辑

correct = 0
for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):cnts = contours.sort_contours(questionCnts[i:i+5])[0]bubbled = Nonefor (j, c) in enumerate(cnts):mask = np.zeros(thresh.shape, dtype="uint8")cv2.drawContours(mask, [c], -1, 255, -1)mask = cv2.bitwise_and(thresh, thresh, mask=mask)total = cv2.countNonZero(mask)if bubbled is None or total > bubbled[0]:bubbled = (total, j)if bubbled[1] == ANSWER_KEY[q]:correct += 1

实现细节

  • 遍历每个问题的答题区域,通过填涂密度判断学生选择,通过计算填涂区域的像素密度来判断学生的的选项。然后将这个选择与答案键中的正确选项进行比较,统计出正确的答案数量。
    在这里插入图片描述

11. 结果展示

score = (correct / float(len(ANSWER_KEY))) * 100
print("总分: {:.2f}%".format(score))
cv2.imshow("Original", image)
cv2.imshow("Exam", paper)
cv2.waitKey(0)

实现细节

  • 计算出得分百分比,并输出。
  • cv2.imshow:展示原始图像和处理后的图像,以便检查标记的正确与错误的答案。

源码下载:答题卡识别判卷系统

这篇关于OpenCV从入门到精通实战(四)——答题卡识别判卷系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916745

相关文章

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

Linux系统之dns域名解析全过程

《Linux系统之dns域名解析全过程》:本文主要介绍Linux系统之dns域名解析全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、dns域名解析介绍1、DNS核心概念1.1 区域 zone1.2 记录 record二、DNS服务的配置1、正向解析的配置

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

Linux系统中配置静态IP地址的详细步骤

《Linux系统中配置静态IP地址的详细步骤》本文详细介绍了在Linux系统中配置静态IP地址的五个步骤,包括打开终端、编辑网络配置文件、配置IP地址、保存并重启网络服务,这对于系统管理员和新手都极具... 目录步骤一:打开终端步骤二:编辑网络配置文件步骤三:配置静态IP地址步骤四:保存并关闭文件步骤五:重

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统