OpenCV从入门到精通实战(四)——答题卡识别判卷系统

2024-04-19 05:44

本文主要是介绍OpenCV从入门到精通实战(四)——答题卡识别判卷系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于OpenCV的答题卡识别系统,其主要功能是自动读取并评分答题卡上的选择题答案。系统通过图像处理和计算机视觉技术,自动化地完成了从读取图像到输出成绩的整个流程。下面是该系统的主要步骤和实现细节的概述:

1. 导入必要的库

系统首先导入了numpyargparseimutilscv2等Python库。这些库提供了处理图像、解析命令行参数等功能。

# 导入工具包
import numpy as np
import argparse
import imutils
import cv2

2. 参数设置

使用argparse库来处理命令行输入参数,允许用户指定输入图像的路径。

# 设置参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default="images/test_01.png",help="path to the input image")
args = vars(ap.parse_args())

3. 定义答案键

系统中定义了一个答案键(ANSWER_KEY),这是一个字典,用于存储每个问题的正确答案选项

# 正确答案
ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}

以下是针对每个主要步骤的对应代码片段,以及如何实现在上述答题卡识别系统中的功能:

4. 图像预处理

image = cv2.imread(args["image"])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(blurred, 75, 200)

实现细节

  • cv2.imread:加载图像。
  • cv2.cvtColor:将图像从BGR颜色空间转换为灰度。
  • cv2.GaussianBlur:应用高斯模糊,减少噪声。
  • cv2.Canny:执行Canny边缘检测。
    在这里插入图片描述

5. 轮廓检测

cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
docCnt = Noneif len(cnts) > 0:cnts = sorted(cnts, key=cv2.contourArea, reverse=True)for c in cnts:peri = cv2.arcLength(c, True)approx = cv2.approxPolyDP(c, 0.02 * peri, True)if len(approx) == 4:docCnt = approxbreak

实现细节

  • cv2.findContours:查找边缘。
  • sorted:按轮廓面积大小排序。
  • cv2.approxPolyDP:轮廓近似,寻找角点。
    在这里插入图片描述

6. 透视变换

paper = four_point_transform(image, docCnt.reshape(4, 2))
warped = four_point_transform(gray, docCnt.reshape(4, 2))

实现细节

  • 使用自定义函数four_point_transform来执行透视变换,以得到答题卡的顶视图。
    在这里插入图片描述

7. 应用阈值

thresh = cv2.threshold(warped, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]

实现细节

  • cv2.threshold:通过Otsu方法自动确定最优阈值并二值化图像。
    在这里插入图片描述

8. 轮廓再次检测

cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)

实现细节

  • 再次检测二值化图像中的轮廓。
    在这里插入图片描述

9. 筛选与排序

questionCnts = []for c in cnts:(x, y, w, h) = cv2.boundingRect(c)ar = w / float(h)if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:questionCnts.append(c)questionCnts = contours.sort_contours(questionCnts, method="top-to-bottom")[0]

实现细节

  • 筛选形状近似于圆的轮廓,并按从上到下排序。
    在这里插入图片描述

10. 评分逻辑

correct = 0
for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):cnts = contours.sort_contours(questionCnts[i:i+5])[0]bubbled = Nonefor (j, c) in enumerate(cnts):mask = np.zeros(thresh.shape, dtype="uint8")cv2.drawContours(mask, [c], -1, 255, -1)mask = cv2.bitwise_and(thresh, thresh, mask=mask)total = cv2.countNonZero(mask)if bubbled is None or total > bubbled[0]:bubbled = (total, j)if bubbled[1] == ANSWER_KEY[q]:correct += 1

实现细节

  • 遍历每个问题的答题区域,通过填涂密度判断学生选择,通过计算填涂区域的像素密度来判断学生的的选项。然后将这个选择与答案键中的正确选项进行比较,统计出正确的答案数量。
    在这里插入图片描述

11. 结果展示

score = (correct / float(len(ANSWER_KEY))) * 100
print("总分: {:.2f}%".format(score))
cv2.imshow("Original", image)
cv2.imshow("Exam", paper)
cv2.waitKey(0)

实现细节

  • 计算出得分百分比,并输出。
  • cv2.imshow:展示原始图像和处理后的图像,以便检查标记的正确与错误的答案。

源码下载:答题卡识别判卷系统

这篇关于OpenCV从入门到精通实战(四)——答题卡识别判卷系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916745

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬