政安晨:【深度学习神经网络基础】(八)—— 神经网络评估回归与模拟退火训练

本文主要是介绍政安晨:【深度学习神经网络基础】(八)—— 神经网络评估回归与模拟退火训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

简述

评估回归

模拟退火训练


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏政安晨的机器学习笔记

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

简述

深度学习神经网络的评估回归是一种用于评估网络性能的方法。

在回归问题中,神经网络被用于将输入数据映射到连续的输出。

评估回归的目标是通过计算网络的输出和真实值之间的差异来评估网络的准确性。常见的评估指标包括均方误差(MSE)和平均绝对误差(MAE)。这些指标可以用来度量预测值与真实值之间的接近程度,从而评估网络的性能。

模拟退火是一种用于训练深度学习神经网络的优化算法。

该算法通过模拟物质在冷却过程中的结构优化过程来寻找全局最优解。在模拟退火算法中,网络的权重和偏差被视为系统的状态变量,优化过程被视为一个寻找最低能量状态的问题。通过迭代地调整网络的权重和偏差,并根据能量函数(即损失函数)计算网络的性能,模拟退火算法可以逐渐优化网络的参数,从而提高网络的性能。

在模拟退火训练中,初始温度被设置为一个比较高的值,然后通过不断迭代降低温度,从而控制系统的状态在搜索空间中移动的程度。每次迭代中,根据能量差和当前温度计算一个概率,用于决定是否接受新的状态。这样,模拟退火算法可以在搜索空间中探索较广的范围,并有可能避免陷入局部最优解。

通过评估回归和模拟退火训练,可以有效地评估和优化深度学习神经网络的性能,从而提高网络的准确性和泛化能力。


评估回归

均方差(MSE)计算是评估回归机器学习的最常用方法。大多数神经网络、支持向量机和其他模型的示例都采用了MSE,如下公式所示:

在上面公式中,y[i]是理想输出,y[i]^是实际输出。均方差的本质是各个差的平方的均值。因为对单个差求平方,所以差的正负性不影响MSE的值。

你可以用MSE评估分类问题。

为了用MSE评估分类输出,每个分类的概率都被简单地看成数字输出。对于正确的类,预期的输出就是1.0,对于其他类,预期的输出则为0。如果第一类是正确的,而其他三类是错误的,则预期结果向量将如下:

[1.0, 0, 0, 0]

这样,你几乎可以将任何回归目标函数用于分类。各种函数,如均方根(Root Mean Square,RMS)和误差平方和(Sum of Squares Error,SSE),都可以用于评估回归。

模拟退火训练

要训练神经网络,必须定义它的任务。目标函数(也称为计分或损失函数)可以生成这些任务。本质上,目标函数会评估神经网络并返回一个数值,表明该神经网络的有用程度。训练会在每次迭代中修改神经网络的权重,从而提高目标函数返回的值。

模拟退火是一种有效的优化技术,已在本系列的前文中提及,我们将回顾模拟退火,展示任意向量优化函数如何改善前馈神经网络的权重。

回顾一下,模拟退火的工作原理是首先将神经网络的权向量赋为随机值,然后将这个向量看成一个位置,程序会评估从该位置开始的所有可能移动。要了解神经网络权重向量如何转换为位置,请考虑只有3个权重的神经网络。在现实世界中,我们用x、y和z坐标来考虑位置。我们可以将任意位置写成有3个分量的向量。如果我们希望只在其中1个维度上移动,那么向量总共可以在6个方向上移动。我们可以选择在x、y或z维度上向前或向后移动。

通过在所有可用的维度上向前或向后移动,模拟退火实现其功能。如果该算法采取了最佳移动,那么将形成简单的爬山算法。爬山只会提高得分,因此,它也被称为贪心算法。为了达到最佳位置,算法有时需要移到较低的位置。因此,模拟退火很多时候有进两步、退一步的表现。

换言之,模拟退火有时会允许移动到具有较差得分的权重配置。接受这种移动的概率开始很高,而后逐渐降低。这种概率称为当前温度,它模拟了实际的冶金退火过程。

下图展示了模拟退火的整个过程。

前馈神经网络可以利用模拟退火来学习鸢尾花数据集。以下程序展示了这种训练的输出:

Iteration #1, Score=0.3937, k=1,kMax=100,t=343.5891,prob=0.9998 Iteration #2, Score=0.3937, k=2,kMax=100,t=295.1336,prob=0.9997 Iteration #3, Score=0.3835, k=3,kMax=100,t=253.5118,prob=0.9989 Iteration #4, Score=0.3835, k=4,kMax=100,t=217.7597,prob=0.9988 Iteration #5, Score=0.3835, k=5,kMax=100,t=187.0496,prob=0.9997 Iteration #6, Score=0.3835, k=6,kMax=100,t=160.6705,prob=0.9997 Iteration #7, Score=0.3835, k=7,kMax=100,t=138.0116,prob=0.9996 ... Iteration #99, Score=0.1031, k=99,kMax=100,t=1.16E-4,prob= 2.8776E-7 Iteration #100, Score=0.1031, k=100,kMax=100,t=9.9999E-5,prob= 2.1443E-70 Final score: 0.1031 [0.22222222222222213, 0.6249999999999999, 0.06779661016949151, 0.04166666666666667] -> Iris-setosa, Ideal: Iris-setosa [0.1666666666666668, 0.41666666666666663, 0.06779661016949151, 0.04166666666666667] -> Iris-setosa, Ideal: Iris-setosa ... [0.6666666666666666, 0.41666666666666663, 0.711864406779661, 0.9166666666666666] -> Iris-virginica, Ideal: Iris-virginica [0.5555555555555555, 0.20833333333333331, 0.6779661016949152, 0.75] -> Iris-virginica, Ideal: Iris-virginica [0.611111111111111, 0.41666666666666663, 0.711864406779661, 0.7916666666666666] -> Iris-virginica, Ideal: Iris-virginica [0.5277777777777778, 0.5833333333333333, 0.7457627118644068, 0.9166666666666666] -> Iris-virginica, Ideal: Iris-virginica [0.44444444444444453, 0.41666666666666663, 0.6949152542372881, 0.7083333333333334] -> Iris-virginica, Ideal: Iris-virginica [1.178018083703488, 16.66575553359515, -0.6101619300462806, -3.9894606091020965, 13.989551673146842, -8.87489712462323, 8.027287801488647, -4.615098285283519, 6.426489182215509, -1.4672962642199618, 4.136699061975335, 4.20036115439746, 0.9052469139543605, -2.8923515248132063, -4.733219252086315, 18.6497884912826, 2.5459600552510895, -5.618872440836617, 4.638827606092005, 0.8887726364890928, 8.730809901357286, -6.4963370793479545, -6.4003385330186795, -11.820235441582424, -3.29494170904095, -1.5320936828139837, 0.1094081633203249, 0.26353076268018827, 3.935780218339343, 0.8881280604852664, -5.048729642423418, 8.288232057956957, -14.686080237582006, 3.058305829324875, -2.4144038920292608, 21.76633883966702, 12.151853576801647, -3.6372061664901416, 6.28253174293219, -4.209863472970308, 0.8614258660906541, -9.382012074551428, -3.346419915864691, -0.6326977049713416, 2.1391118323593203, 0.44832732990560714, 6.853600355726914, 2.8210824313745957, 1.3901883615737192, -5.962068350552335, 0.502596306917136]

最初的随机神经网络,多类对数损失得分很高,即30。随着训练的进行,该值一直下降,直到足够低时训练停止。对于这个例子,一旦错误降至10以下,训练就会停止。

要确定错误的良好停止点,你应该评估神经网络在预期用途下的运行情况。

低于0.5的对数损失通常在可接受的范围内;

但是,神经网络可能无法对所有数据集都达到这个得分。


这篇关于政安晨:【深度学习神经网络基础】(八)—— 神经网络评估回归与模拟退火训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908399

相关文章

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应