【Tesla T4为例】GPU安装最新版本NVIDIA Driver、CUDA、cuDNN、Anaconda、Pytorch

本文主要是介绍【Tesla T4为例】GPU安装最新版本NVIDIA Driver、CUDA、cuDNN、Anaconda、Pytorch,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NVIDIA Driver

进入英伟达官网下载页面
在这里插入图片描述
按照以上方式选择即可得到>535.113.01版本的驱动,可以实现多卡推理,小于这个版本会导致多卡训练以及推理报错
虽然最新版本为550.54.15,但是535版本更加稳定,并且pytorch目前只支持到12.1,而在CUDA Toolkit选择栏中没有这个版本,所以选择12.2最稳妥
在这里插入图片描述
下载后上传至服务器,在安装驱动前先安装一些依赖

sudo yum install epel-release
sudo yum update
sudo yum install pkgconfig libglvnd-devel

赋予权限后运行

chmod +x NVIDIA-Linux-x86_64-535.161.08.run
sh ./NVIDIA-Linux-x86_64-535.161.08.run -s  --no-x-check
nvidia-smi

在这里插入图片描述

CUDA

进入CUDA官网下载页面
在这里插入图片描述
在服务器中输入uname -a查看服务器系统
然后选择对应的版本
在这里插入图片描述
在Base Installer的Installation Instructions这里,对wget之后的内容选中-右键-转到这个网址,或者复制后在新的标签页打开即可下载,下载后上传至服务器,执行(4个G大小)

sudo sh cuda_12.2.0_535.54.03_linux.run

运行后在出现的页面中以下操作

1.输入accept
2. - [×] Driver 取消×

按回车进行取消,然后按↓到Install进行回车进行安装
在这里插入图片描述
安装完成后显示

===========
= Summary =
===========Driver:   Not Selected
Toolkit:  Installed in /usr/local/cuda-12.2/Please make sure that-   PATH includes /usr/local/cuda-12.2/bin-   LD_LIBRARY_PATH includes /usr/local/cuda-12.2/lib64, or, add /usr/local/cuda-12.2/lib64 to /etc/ld.so.conf and run ldconfig as rootTo uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-12.2/bin
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 535.00 is required for CUDA 12.2 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:sudo <CudaInstaller>.run --silent --driverLogfile is /var/log/cuda-installer.log

根据上面的提示信息设置路径

export PATH=/usr/local/cuda-12.2/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

输入命令nvcc -V进行检验

[root@Nvidia-Tesla-T4 Downloads]# nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue_Jun_13_19:16:58_PDT_2023
Cuda compilation tools, release 12.2, V12.2.91
Build cuda_12.2.r12.2/compiler.32965470_0

CuDNN

在这里插入图片描述
最新的9.0.0版本支持以前的所有版本以及未来的版本,安装即可,cuDNN网址
在这里插入图片描述
https://developer.download.nvidia.com/compute/cudnn/9.0.0/local_installers/cudnn-local-repo-rhel7-9.0.0-1.0-1.x86_64.rpm
和之前一样,点开链接下载

sudo rpm -i cudnn-local-repo-rhel7-9.0.0-1.0-1.x86_64.rpm
sudo yum clean all
sudo yum -y install cudnn

Anaconda

进入官网下载

sh Anaconda3-2024.02-1-Linux-x86_64.sh

一直按回车最后输入yes,再按一次回车,最后配置是否在进入服务器时就启动base_conda,我选择no
设置一下环境变量

export PATH="/root/anaconda3/bin:$PATH"

然后配置conda源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
conda config --show channels

创建自己的虚拟环境

conda create -n sakura python=3.10

安装完成后添加pip源

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

Pytorch

根据pytorch官方的配置选择
在这里插入图片描述

pip3 install torch torchvision torchaudio

验证一下

python
import torch
print("torch.__version__        ",torch.__version__)
# torch.__version__         2.2.2+cu121
print("torch.version.cuda       ",torch.version.cuda)
# torch.version.cuda        12.1
print("torch.cuda.is_available  ",torch.cuda.is_available())
# torch.cuda.is_available   True
print('torch.cuda.get_device_name       '+ str(torch.cuda.get_device_name()))
# torch.cuda.get_device_name       Tesla T4
print('torch.cuda.device_count  '+ str(torch.cuda.device_count()))
# torch.cuda.device_count  4

这篇关于【Tesla T4为例】GPU安装最新版本NVIDIA Driver、CUDA、cuDNN、Anaconda、Pytorch的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908170

相关文章

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的