给自己的机器人部件安装单目摄像头并实现gazebo仿真功能

2024-04-15 06:04

本文主要是介绍给自己的机器人部件安装单目摄像头并实现gazebo仿真功能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

手术执行器添加摄像头

  • 手术执行器文件夹surgical_new内容展示
  • 如何添加单目摄像头
  • 下载现成的机器人环境文件
  • 启动仿真环境

手术执行器文件夹surgical_new内容展示

在这里插入图片描述
进入src文件夹下选择进入vision_obliquity文件夹
在这里插入图片描述
选择launch
在这里插入图片描述
有两个可用gazebo中rviz展示的launch文件,robot.launch是添加有摄像头的手术执行器文件,robot_env.launch进一步添加有环境信息的手术执行器文件
在这里插入图片描述
下图是robot.launch展示(红色方块是我们添加的摄像头):
在这里插入图片描述
下图是robot_env.launch展示:
在这里插入图片描述

如何添加单目摄像头

参考b站学习视频的添加摄像头部分内容: https://www.bilibili.com/video/BV1Ci4y1L7ZZ?p=263&vd_source=9e3999ac88af2c6889c5f00cccc8d215
对应课程文档链接:http://www.autolabor.com.cn/book/ROSTutorials/
实现为我们自己的机器人添加摄像头功能:
实现流程:
摄像头仿真基本流程:
已经创建完毕的机器人模型,编写一个单独的 xacro 文件,为机器人模型添加摄像头配置;
将此文件集成进xacro文件;
启动 Gazebo,使用 Rviz 显示摄像头信息。

  1. 摄像头 xacro 文件
    camera.xacro,代码内容如下:
    camera link、将相机作为一个link添加到机器人上的部件link2,于是便有个camera2link2的关节,type为固定的fixed
<!-- 摄像头相关的 xacro 文件 -->
<robot name="my_camera" xmlns:xacro="http://wiki.ros.org/xacro"><!-- 摄像头属性 --><xacro:property name="camera_length" value="0.001" /> <!-- 摄像头长度(x) --><xacro:property name="camera_width" value="0.00025" /> <!-- 摄像头宽度(y) --><xacro:property name="camera_height" value="0.00025" /> <!-- 摄像头高度(z) --><xacro:property name="camera_x" value="0" /> <!-- 摄像头安装的x坐标 --><xacro:property name="camera_y" value="0" /> <!-- 摄像头安装的y坐标 --><xacro:property name="camera_z" value="0.02" /> <!-- 摄像头安装的z坐标:底盘高度 / 2 + 摄像头高度 / 2  --><!-- Create laser reference frame --><link name="camera"><visual><origin xyz="0.000198755346578818 -0.000268944626068074 -0.0105330004865362" rpy="0 0 0" /><geometry><box size="${camera_length} ${camera_width} ${camera_height}" /></geometry><material name="red"/></visual><collision><origin xyz="0.000198755346578818 -0.000268944626068074 -0.0105330004865362" rpy="0 0 0" /><geometry><box size="${camera_length} ${camera_width} ${camera_height}" /></geometry></collision></link><!-- 关节 --><joint name="camera2link2" type="fixed"><parent link="link2"/><child link="camera" /><!-- 需要计算两个 link 的物理中心之间的偏移量 --><!-- 设置joint相对于父节的偏移量 --><origin xyz="-0.00028 -0.0003 0.0102" rpy="0 0 0" /><!-- 设置关节旋转参考的坐标轴,0表示不绕该轴旋转,1表示绕该轴旋转 --><axis xyz="0 0 1" /></joint> 
</robot>
  1. Gazebo 仿真摄像头
    通过 Gazebo 模拟摄像头传感器,并在 Rviz 中显示摄像头数据
    新建 xacro 文件命名为cameraz_gazebo.xacro,配置摄像头传感器信息:
<?xml version="1.0"?>
<robot xmlns:xacro="http://www.ros.org/wiki/xacro" name="my_sensors"><gazebo reference="camera"><material>Gazebo/Red</material></gazebo><gazebo reference="camera"><sensor type="camera" name="camera_node"><update_rate>30.0</update_rate><camera name="head"><horizontal_fov>1.3962634</horizontal_fov><image><width>1280</width><height>720</height><format>R8G8B8</format></image><clip><near>0.02</near><far>300</far></clip><noise><type>gaussian</type><mean>0.0</mean><stddev>0.007</stddev></noise></camera><plugin name="gazebo_camera" filename="libgazebo_ros_camera.so"><alwaysOn>true</alwaysOn><updateRate>0.0</updateRate><cameraName>/camera</cameraName><imageTopicName>image_raw</imageTopicName><cameraInfoTopicName>camera_info</cameraInfoTopicName><frameName>camera</frameName><hackBaseline>0.07</hackBaseline><distortionK1>0.0</distortionK1><distortionK2>0.0</distortionK2><distortionK3>0.0</distortionK3><distortionT1>0.0</distortionT1><distortionT2>0.0</distortionT2></plugin></sensor></gazebo>
</robot>

1.2摄像头 xacro 文件
camera.xacro,代码内容如下:
camera link、将相机作为一个link添加到机器人上link2,于是便有个camera2link2的关节,type为固定的fixed

<!-- 摄像头相关的 xacro 文件 -->
<robot name="my_camera" xmlns:xacro="http://wiki.ros.org/xacro"><!-- 摄像头属性 --><xacro:property name="camera_length" value="0.001" /> <!-- 摄像头长度(x) --><xacro:property name="camera_width" value="0.00025" /> <!-- 摄像头宽度(y) --><xacro:property name="camera_height" value="0.00025" /> <!-- 摄像头高度(z) --><xacro:property name="camera_x" value="0" /> <!-- 摄像头安装的x坐标 --><xacro:property name="camera_y" value="0" /> <!-- 摄像头安装的y坐标 --><xacro:property name="camera_z" value="0.02" /> <!-- 摄像头安装的z坐标:底盘高度 / 2 + 摄像头高度 / 2  --><!-- Create laser reference frame --><link name="camera"><visual><origin xyz="0.000198755346578818 -0.000268944626068074 -0.0105330004865362" rpy="0 0 0" /><geometry><box size="${camera_length} ${camera_width} ${camera_height}" /></geometry><material name="red"/></visual><collision><origin xyz="0.000198755346578818 -0.000268944626068074 -0.0105330004865362" rpy="0 0 0" /><geometry><box size="${camera_length} ${camera_width} ${camera_height}" /></geometry></collision></link><!-- 关节 --><joint name="camera2link2" type="fixed"><parent link="link2"/><child link="camera" /><!-- 需要计算两个 link 的物理中心之间的偏移量 --><!-- 设置joint相对于父节的偏移量 --><origin xyz="-0.00028 -0.0003 0.0102" rpy="0 0 0" /><!-- 设置关节旋转参考的坐标轴,0表示不绕该轴旋转,1表示绕该轴旋转 --><axis xyz="0 0 1" /></joint> 
</robot>

封装惯性矩阵算法的 xacro 文件,内容如下的my_head.xacro文件书写,这个文件复制于链接http://www.autolabor.com.cn/book/ROSTutorials/di-6-zhang-ji-qi-ren-xi-tong-fang-zhen/66-urdfji-cheng-gazebo/662-urdf-ji-cheng-gazebo-xiang-guan-she-zhi.html的6.6.2 URDF集成Gazebo相关设置这一小节,将标准的球体、圆柱与立方体的惯性矩阵公式封装成xacro实现:

<robot name="base" xmlns:xacro="http://wiki.ros.org/xacro"><!-- Macro for inertia matrix --><xacro:macro name="sphere_inertial_matrix" params="m r"><inertial><mass value="${m}" /><inertia ixx="${2*m*r*r/5}" ixy="0" ixz="0"iyy="${2*m*r*r/5}" iyz="0" izz="${2*m*r*r/5}" /></inertial></xacro:macro><xacro:macro name="cylinder_inertial_matrix" params="m r h"><inertial><mass value="${m}" /><inertia ixx="${m*(3*r*r+h*h)/12}" ixy = "0" ixz = "0"iyy="${m*(3*r*r+h*h)/12}" iyz = "0"izz="${m*r*r/2}" /> </inertial></xacro:macro><xacro:macro name="Box_inertial_matrix" params="m l w h"><inertial><mass value="${m}" /><inertia ixx="${m*(h*h + l*l)/12}" ixy = "0" ixz = "0"iyy="${m*(w*w + l*l)/12}" iyz= "0"izz="${m*(w*w + h*h)/12}" /></inertial></xacro:macro>
</robot>

组合执行器与摄像头

<!-- 组合执行器与摄像头 -->
<robot name="my_robot" xmlns:xacro="http://wiki.ros.org/xacro"><xacro:include filename="myhead.xacro" /><xacro:include filename="vision_obliquity_gazebo.xacro" /><xacro:include filename="camera.xacro" /><xacro:include filename="camera_gazebo.xacro" />
</robot>

这里的vision_obliquity_gazebo.xacro是我们自己的机器人xacro文件,也就是手术执行器,替换成你们自己的机器人描述文件。

下载现成的机器人环境文件

1.下载官方模型库
https://github.com/osrf/gazebo_models
2.将模型库复制进 gazebo
将得到的box_hours.world文件复制到 /urdf/worlds下
在这里插入图片描述

启动仿真环境

  1. 进入到手术执行器文件夹surgical_new文件夹路径下
    执行如下命令,启动gazebo:
catkin_make
source devel/setup.bash
roslaunch vision_obliquity robot_env.launch

在这里插入图片描述

  1. 进入到手术执行器文件夹surgical_new文件夹路径下
    另起一个终端terminal,执行命令,就可以看到摄像头环境信息
rqt_image_view

在这里插入图片描述

这篇关于给自己的机器人部件安装单目摄像头并实现gazebo仿真功能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/905025

相关文章

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

Centos7安装Mongodb4

1、下载源码包 curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-4.2.1.tgz 2、解压 放到 /usr/local/ 目录下 tar -zxvf mongodb-linux-x86_64-rhel70-4.2.1.tgzmv mongodb-linux-x86_64-rhel70-4.2.1/

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

Centos7安装JDK1.8保姆版

工欲善其事,必先利其器。这句话同样适用于学习Java编程。在开始Java的学习旅程之前,我们必须首先配置好适合的开发环境。 通过事先准备好这些工具和配置,我们可以避免在学习过程中遇到因环境问题导致的代码异常或错误。一个稳定、高效的开发环境能够让我们更加专注于代码的学习和编写,提升学习效率,减少不必要的困扰和挫折感。因此,在学习Java之初,投入一些时间和精力来配置好开发环境是非常值得的。这将为我

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo