CDQ分治维护凸包 优化dp 【NOI2007】货币兑换cash bzoj1492

2024-04-14 23:48

本文主要是介绍CDQ分治维护凸包 优化dp 【NOI2007】货币兑换cash bzoj1492,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述:
小 Y 最近在一家金券交易所工作。该金券交易所只发行交易两种金券:A 纪
念券(以下简称 A 券)和 B 纪念券(以下简称 B 券)。每个持有金券的顾客都有
一个自己的帐户。金券的数目可以是一个实数。
每天随着市场的起伏波动,两种金券都有自己当时的价值,即每一单位金券
当天可以兑换的人民币数目。我们记录第 K 天中 A 券和 B 券的价值分别为 AK 和
BK (元/单位金券)。
为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法。
比例交易法分为两个方面:
a) 卖出金券:顾客提供一个[0,100]内的实数OP作为卖出比例,其意
义为:将OP%的A券和OP%的B券以当时的价值兑换为人民币;
b) 买入金券:顾客支付IP元人民币,交易所将会兑换给用户总价值为
IP的金券,并且,满足提供给顾客的A券和B券的比例在第K天恰好为RateK;

例如,假定接下来3天内的Ak 、Bk、Ratek 的变化分别为:

时间 Ak Bk Ratek
第一天 1 1 1
第二天 1 2 2
第三天 2 2 3
假定在第一天时,用户手中有100元人民币但是没有任何金券。
用户可以执行以下的操作:
时间 用户操作 人民币(元) A券的数量 B券的数量
开户 无 100 0 0
第一天 买入100元 0 50 50
第二天 卖出50% 75 25 25
第二天 买入60元 15 55 40
第三天 卖出100% 205 0 0

注意到,同一天内可以进行多次操作。
小 Y 是一个很有经济头脑的员工,通过较长时间的运作和行情测算,他已经
知道了未来 N 天内的 A 券和 B 券的价值以及 Rate。他还希望能够计算出来,如
果开始时拥有S元钱,那么N天后最多能够获得多少元钱。

一张图揭示这道题有多么深入人心:
这里写图片描述

题目分析:
首先可以分析出,想获得最大收益,如果在某一天买入,那么一定花掉所有的钱买入,如果卖出那么一定卖掉所有的金券。
我们设到第i天获得的最大收益为f[i]
设在第i天最多能购买A券x[i],B券y[i]
则有f[i]=a[i]*x[i]+b[i] *y[i]
并且有x[i]:y[i]=rate[i]
两式联立得:
y[i]=f[i]/(a[i]*rate[i]+b[i])
x[i]=f[i]*rate[i]/(a[i] *rate[i] +b[i])

可以推出转移方程为f[i]=Max{ f[i-1],a[i]* x[j]+b[i] *y[j] }
对于f[i]=a[i]*x[j] +b[i] *y[j]
可以转化为:
f[i]/b[i]=a[i]/b[i]*x[j]+y[j]
设Y=y[j]
设k=-a[i]/b[i]
设X=x[j]
设P=f[i]/b[j]
可得Y=kX+P
看样子可以斜率优化,但问题是X不是单调的,K也不是单调的。
所以无法O(n)维护凸包。
可以用平衡树维护凸包啊!!!然后在凸包上二分斜率!!!
恩,我写了一个下午,写挂了(=。=果然蒟蒻就是蒟蒻啊)
于是还是用更好想也更好写的CDQ分治吧。
对于区间l到r,先递归处理l到mid的答案,然后暴力求出l到mid的凸包,去更新mid+1到r的答案,再递归处理mid+1到r的答案。
因为mid+1到r的斜率不单调,所以我们可以选择在凸包上二分。
时间复杂度:O(nlog^2n),也不比平衡树维护凸包差很多嘛!

代码如下:

#include <cstdio>
#include <vector>
#include <algorithm>
#define N 120000
using namespace std;
inline double Max(double x,double y) { return x>y?x:y; }
struct point{double x,y;point(double x=0,double y=0):x(x),y(y){}point operator - (const point &c) const { return point (x-c.x,y-c.y); }bool operator < (const point &c) const { return x<c.x || x==c.x && y<c.y; }double operator * (const point &c) const { return x*c.y-y*c.x; }
}h[N],p[N];
struct cash{double x,y,a,b;
}day[N];
int n,top;
double m;
double f[N];
void convex_hull(point a[],int l,int r)
{top=0;sort(a+l,a+r+1);for(int i=l;i<=r;i++){while(top>1 && (h[top]-h[top-1])*(a[i]-h[top-1])>=0) top--;h[++top]=a[i];}return;
}
bool judge(int now,double k)
{if(now!=top && h[now+1].y-h[now].y>(h[now+1].x-h[now].x)*k) return false;return true;
}
double divide(double k)
{int l=1,r=top;int ans=top;while(l<=r){int mid=l+r>>1;if(judge(mid,k)) ans=mid,r=mid-1;else l=mid+1;}return h[ans].y-h[ans].x*k;
}
void CDQ(int l,int r)
{if(l==r){f[l]=Max(f[l],f[l-1]);return;}int mid=l+r>>1;CDQ(l,mid);for(int i=l;i<=mid;i++) p[i]=point(f[i]*day[i].x,f[i]*day[i].y);convex_hull(p,l,mid);for(int i=mid;i<=r;i++)f[i]=Max(f[i],divide(-day[i].a/day[i].b)*day[i].b);CDQ(mid+1,r);
}
int main()
{scanf("%d%lf",&n,&m);f[0]=m;for(int i=1;i<=n;i++){double a,b,rate;scanf("%lf%lf%lf",&a,&b,&rate);day[i].y=1.0/(rate*a+b); day[i].x=day[i].y*rate;day[i].a=a; day[i].b=b;}CDQ(1,n);double ans=f[n];printf("%.3lf\n",ans);return 0;
}

这篇关于CDQ分治维护凸包 优化dp 【NOI2007】货币兑换cash bzoj1492的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904361

相关文章

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器