咳两声就能锁定新冠!MIT收集20万咳嗽样本,用AI辨别无症状感染者,准确率100%...

本文主要是介绍咳两声就能锁定新冠!MIT收集20万咳嗽样本,用AI辨别无症状感染者,准确率100%...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来源:大数据文摘

本文约2700字,建议阅读8分钟

最近发表在《IEEE医学与生物学工程学杂志》上的一篇论文中,麻省理工学院的研究人员表示,他们已经开发出可以识别COVID-19感染者咳嗽声的AI。

10月25日,喀什地区疏附县24日发现1例新冠肺炎无症状感染者后,新疆迅速对其密切接触者、密切接触者的接触者进行核酸检测,截至10月25日14时,检测出137人呈阳性,经专家诊断,均为无症状感染者。

后疫情时代,无症状感染者正成为疫情复发最大的威胁。没有任何胸闷发热症状,你和同伴可能很难区分是否感染了新冠。

但人工智能可以,只要你给TA听听你的咳嗽声。

在最近发表在《IEEE医学与生物学工程学杂志》上的一篇论文中,麻省理工学院的研究人员表示,他们已经开发出可以识别COVID-19感染者咳嗽声的AI。

论文地址:

https://www.embs.org/ojemb/articles/covid-19-artificial-intelligence-diagnosis-using-only-cough-recordings/

据论文显示,研究小组开发了一种AI模型,该模型通过分析你的咳嗽录音,可以将无症状感染者与健康的人区分开来。所有人都可以通过网络浏览器以及手机和笔记本电脑等设备自愿提交的录音。

研究人员称,该模型由他们一直以来进行的“咳嗽检测阿尔兹海默早期症状”演变而来,疫情以来,研究者通过“网络众筹”的方式,已经在全球搜集了20多万的咳嗽样本,建立了有史以来最大的“咳嗽数据库”。

通过这些咳嗽样本和录入的相关感染、性别、情绪数据,对该模型进行了声音训练。

目前,该模型识别出确诊为Covid-19的人的咳嗽的准确率为98.5%,其中,利用咳嗽声识别无症状感染者的准确度高达100%

麻省理工的研究小组正在努力将该模型整合到一个用户友好的应用程序中,如果获得FDA的批准并被大规模采用,该程序将有可能成为一种免费、便捷、无创的预筛查工具,以识别可能对Covid-19无症状的人。

用户可以每天登录,录下咳嗽声到他们的手机中,并立即获得有关他们是否可能被感染的信息。

麻省理工学院自动识别实验室的研究科学家布莱恩·苏比拉纳(Brian Subirana)与麻省理工学院自动ID实验室的Jordi Laguarta和Ferran Hueto联合完成了这项研究。

从阿兹海默症检测到新冠检测

其实这项算法并非为新冠定制。

早在疫情爆发之前,这个研究小组已经在咳嗽的手机录音中训练算法,以准确诊断肺炎和哮喘等疾病。麻省理工学院的团队正在以类似的方式开发AI模型,以分析强迫咳嗽记录,以查看它们是否可以检测出阿尔茨海默氏症的体征,这种疾病不仅与记忆力下降有关,而且还与神经肌肉退化(如声带减弱)有关。

他们首先训练了一种通用的机器学习算法或称为ResNet50的神经网络,以区分与不同声带强度相关的声音。研究表明,声音“ mmmm”的质量可以表明一个人的声带有多弱。Subirana在包含了1000多个小时语音的有声读物数据集上训练了神经网络,以从“ the”和“ then”等其他词中挑选出“ them”一词。

该小组训练了第二个神经网络来区分言语中明显的情绪状态,因为已证明阿尔茨海默氏症患者以及神经系统较弱的人表现出某些情绪,例如沮丧或平淡无奇,比他们表达快乐还是冷静的情绪更高。

研究人员通过在大型演员数据集上训练情绪情感分类器(例如中性,平静,快乐和悲伤)来开发情绪语音分类器模型。

然后,研究人员在咳嗽数据库上训练了第三个神经网络,以辨别肺和呼吸功能的变化。

最后,该团队将这三个模型结合在一起,并叠加了一种算法来检测肌肉退化。该算法通过实质上模拟音频蒙版或噪声层,并区分强咳嗽(通过噪声可以听到的咳嗽)与较弱的咳嗽,来做到这一点。

通过新的AI框架,该团队提供了包括阿尔茨海默氏症患者在内的音频记录,发现与现有模型相比,它可以更好地识别阿尔茨海默氏症的样本。

结果表明,声带强度、情绪、肺和呼吸功能以及肌肉退化是诊断该疾病的有效生物标志物。

当冠状病毒大流行开始蔓延时,Subirana想知道他们针对阿尔茨海默氏症的AI框架是否也可以用于诊断Covid-19,因为越来越多的证据表明感染的患者会经历一些类似的神经系统症状,例如暂时性神经肌肉损伤。

“说话和咳嗽的声音都受到声带和周围器官的影响。这意味着当讲话时,部分讲话就像是咳嗽,反之亦然。这也意味着我们很容易从流利的言语中衍生出一些东西,人工智能可以简单地从咳嗽中发现一些信息,包括人的性别、母语甚至情绪状态。实际上,您的咳嗽中蕴含着情感。” Subirana说。

“所以我们认为,为什么我们不尝试探究这些阿兹海默症的生物标志物(以及看它们是否与Covid相关)”。

20万+咳嗽样本,已知最大的咳嗽研究数据集

 

在4月,研究小组着手收集尽可能多的咳嗽记录,包括来自Covid-19患者的咳嗽记录。

他们建立了一个网站,人们可以通过手机或其他支持网络的设备记录一系列咳嗽。参与者还填写了他们正在经历的症状的调查表,无论他们是否患有Covid-19,是否通过官方测试,通过医生对其症状的评估或是否经过自我诊断而得到了诊断。他们还可以记录自己的性别,地理位置和母语。

迄今为止,研究人员已经收集了70,000多条录音,每条录音包含多个咳嗽声,总计约200,000咳嗽音频样本,Subirana说这是“已知最大的咳嗽研究数据集”。确认患有Covid-19的人(包括无症状的人)提交了大约2500份录音。

该团队使用了2,500个与Covid相关的记录,以及他们从集合中随机选择的另外2500个记录来平衡数据集。他们使用了4,000个样本来训练AI模型。然后将其余的1,000个记录输入模型中,以查看它能否准确区分出Covid患者和健康个体的咳嗽。

令人惊讶的是,正如研究人员在论文中所写的那样,他们的努力揭示了“阿尔茨海默氏症和新冠咳嗽算法之间惊人的相似之处”。

他们发现,在原本用于阿尔茨海默氏症的AI框架内无需进行大量调整,他们就能找到针对Covid-19的四种生物标志物的模式-声带强度、情绪、肺和呼吸功能以及肌肉退化。该模型从Covid-19确诊的人中识别出98.5%的咳嗽,并准确地检测到了所有无症状的咳嗽。

Subirana说:“我们认为这表明,即使您没有症状,当您拥有Covid时,您产生声音的方式也会改变。”

100%检测到无症状感染者

 

Subirana强调,这种AI模型的优势不在于检测有症状的新冠患者,不管他们的症状是由于Covid-19还是其他症状(如流感或哮喘)引起的。该工具的优势在于它能够分辨无症状新冠感染者的咳嗽和健康的咳嗽。 

MIT的团队正在与一家公司合作,根据他们的AI模型开发免费的预检应用程序。他们还与世界各地的多家医院合作,收集更大,更多样化的咳嗽记录集,这将有助于训练和增强模型的准确性。

正如他们在论文中提出的那样,“如果预筛查工具始终在后台并且不断改进,那么泛滥症就可能成为过去。”

最终,他们设想可以将他们开发的音频AI模型集成到智能扬声器和其他听音设备中,以便人们可以方便地(也许每天)对他们的疾病风险进行初步评估。

相关链接:

https://news.mit.edu/2020/covid-19-cough-cellphone-detection-1029

https://techcrunch.com/2020/10/30/cough-scrutinizing-ai-shows-major-promise-as-an-early-warning-system-for-covid-19/

https://www.engadget.com/ai-covid-19-cough-detection-from-recordings-213858299.html

编辑:王菁

校对:林亦霖

这篇关于咳两声就能锁定新冠!MIT收集20万咳嗽样本,用AI辨别无症状感染者,准确率100%...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901284

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

JS常用组件收集

收集了一些平时遇到的前端比较优秀的组件,方便以后开发的时候查找!!! 函数工具: Lodash 页面固定: stickUp、jQuery.Pin 轮播: unslider、swiper 开关: switch 复选框: icheck 气泡: grumble 隐藏元素: Headroom

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti