代码随想录算法训练营第三十八天| 509. 斐波那契数,70. 爬楼梯,746. 使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营第三十八天| 509. 斐波那契数,70. 爬楼梯,746. 使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目与题解

参考资料:动态规划基础

动态规划五步曲 

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

509. 斐波那契数

题目链接:​​​​​​​509. 斐波那契数

代码随想录题解:509. 斐波那契数

视频讲解:手把手带你入门动态规划 | LeetCode:509.斐波那契数_哔哩哔哩_bilibili

解题思路:

        斐波那契数是最经典的递归/迭代题,迭代方法对应的就是动态规划。

        已知F(0), F(1)以及F(n) = F(n-1)+F(n-2),直接就可以用循环逐一写出F(n)的值了。这里因为不需要求1-n之间每个数的斐波那契数,所以简单一点,不用数组记录结果,只要用临时变量记录F(n-1)和F(n-2)即可。

class Solution {public int fib(int n) {if (n <= 1) return n;int pre1 = 0, pre2 = 1;int cur = 0;for (int i = 2; i < n; i++) {cur = pre1 + pre2;pre1 = pre2;pre2 = cur;}return cur;}
}

看完代码随想录之后的想法 

        按照随想录的五步法做练习:

  1. 确定dp数组(dp table)以及下标的含义:dp[i]表示数i的斐波那契数
  2. 确定递推公式:题目已经给了,dp[i]=dp[i-1]+dp[i-2]
  3. dp数组如何初始化:同样题目已经给了,dp[0] = 0, dp[1] = 1
  4. 确定遍历顺序:当前数的斐波那契数由其前两个数相加直接得到,所以按顺序遍历即可
  5. 举例推导dp数组:随意用一串斐波那契数带入递推公式 - 0,1,1,2,3,5,8...,符合要求

遇到的困难

        无

70. 爬楼梯

题目链接:​​​​​​​70. 爬楼梯

代码随想录题解:70. 爬楼梯

视频讲解:带你学透动态规划-爬楼梯(对应力扣70.爬楼梯)| 动态规划经典入门题目_哔哩哔哩_bilibili

解题思路:

        这题其实其实就是求斐波那契数的变种,因为爬到当前楼梯的方法,要么是从前一个楼梯爬一级,要么是从再前一个楼梯爬两级,除此之外没有别的选择了,所以递推公式仍然是F(n) = F(n-1)+F(n-2),不一样的地方在于初始值,第一个数F(1)=1,第二个数F(2)=2。

class Solution {public int climbStairs(int n) {if (n <= 2) return n;int[] dp = new int[]{1, 2};int res = 0;for (int i = 3; i <= n; i++) {res = dp[0] + dp[1];dp[0] = dp[1];dp[1] = res;}return res;}
}

看完代码随想录之后的想法 

        附上拓展题,一次最多可以爬m个台阶

class Solution {
public:int climbStairs(int n) {vector<int> dp(n + 1, 0);dp[0] = 1;for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) { // 把m换成2,就可以AC爬楼梯这道题if (i - j >= 0) dp[i] += dp[i - j];}}return dp[n];}
};

遇到的困难

        无

746. 使用最小花费爬楼梯 

题目链接:746. 使用最小花费爬楼梯 

代码随想录题解:​​​​​​​746. 使用最小花费爬楼梯 

视频讲解:动态规划开更了!| LeetCode:746. 使用最小花费爬楼梯_哔哩哔哩_bilibili

解题思路:

        这题比普通爬楼梯略复杂了一些,除了一次可以爬一步或者两步的基础要求外,还有需要花费最小代价,所以爬楼梯时哪些台阶走一步,哪些台阶走两步,就涉及到了选择的问题。但是,这里还是可以抽象化为动态规划去做,用dp[i]记录爬到当前台阶所需的最小花费,那么dp[i]要么是从dp[i-1]走一步得到,要么是从dp[i-2]走两步得到,所以dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2])。

        这里需要注意一下,爬上第0级和第1级台阶是不需要代价的,所以初始化dp[0]=dp[1]=0。

class Solution {public int minCostClimbingStairs(int[] cost) {int[] dp = new int[]{0, 0};int sum = 0;for (int i = 2; i <= cost.length; i++) {sum = Math.min(dp[1] + cost[i - 1], dp[0] + cost[i - 2]);dp[0] = dp[1];dp[1] = sum;}return dp[1];}
}

看完代码随想录之后的想法 

        思路是一样的,这题同样不难,不严格按照五步分析也能写出来。但是后面题目变难了就不好说了。

遇到的困难

        一开始初始化dp[0]和dp[1]的时候写成了cost[0]cost[1],怎么着都不对,然后就用了一个数列举例,逐一写出如何得到dp[i]的结果,然后才意识到第0,1级台阶不需要cost就可以上去。所以做错的时候直接举例最直观。

今日收获

        初步学习了动态规划方法的五部曲,用简单题实践了一下,目前感觉尚可。

这篇关于代码随想录算法训练营第三十八天| 509. 斐波那契数,70. 爬楼梯,746. 使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900407

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互