Peter算法小课堂—动态规划斜率优化

2024-04-12 23:52

本文主要是介绍Peter算法小课堂—动态规划斜率优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家来到这一堂课,就说明大家已经学过函数了

直线方程:y=kx+b

大家可以算一算。

其实,在数学上,这玩意要分类讨论

那么,这唯一的交点就是我们要背出来的

直线最值

这像一个分段函数

其实,只有部分直线能提供最小值,另外的,就可以省略

当然,最大值也一样。

看一下太戈编程第2627题

题目

在平面直角坐标系里,横坐标为x,纵坐标为y。有n条直线,第i条直线的形式为:y=b[i]+k[i]*x。其中整数b[i]为截距,整数k[i]为斜率。已知k[i]随着i的增加而减小。另外有m个从小到大排布的横坐标,第i个为x[i]。请求出在每个横坐标位置上各个直线的纵坐标最小值是多少?(纯数学)

暴力

struct Line{ll b,k;} lines[N];
int main(){ll n,m;cin>>n>>m;for(ll i=1;i<=n;i++) cin>>lines[i].b;for(ll i=1;i<=n;i++) cin>>lines[i].k;for(ll i=1;i<=m;i++) cin>>x[i];for(ll i=1;i<=m;i++){ans[i]=INF;for(ll j=1;j<=n;j++){ans[i]=min(ans[i],lines[j].b+lines[j].k*x[i]);}}for(int i=1;i<=m;i++) cout<<ans[i]<<" ";return 0;
}

时间复杂度不太行

优化

根据前面的分析,

但是,这好像只能做到常数级别的优化

注意:斜率递减

2号和0号的节点在2号和1号节点左侧,那么说明,1号线是废线,可以省略。

做之前,要做准备工作

struct Line{ll b,k;} lines[N];
ld X(ll u,ll v){return -(ld)(lines[u].b-lines[v].b)/(lines[u].k-lines[v].k);
}

然后,我们维护一个队列,里面是可能参与最小值的直线编号

ll l=1,r=1;
for(ll i=1;i<=n;++i){while(r-l>=2&&X(i,q[r-1])<X(q[r-1],q[r-2])) r--;q[r++]=i;
}

筛完了,剩下一个上凸轮廓。那么,一条直线只会提供一部分最小,之后的我们称之为“过气的直线”

假设现在有两条直线l,l+1,程序运行到x[i]。当x[i]在交点右侧时,l+1提供最小;当x[i]在交点左侧时,l+1不能提供最小。

for(ll i=1;i<=m;++i){while(r-l>=2&&X(q[l],q[l+1])<x[i]) ++l;int j=q[l];ans[i]=lines[j].b+lines[j].k*x[i];
}

书籍叠放1

题目

你有n本书,编号1到n,需要分几堆叠放在桌面上。每本书的正面都是一个长方形,共四条边,左右两侧边长对应长方形的长度,上下两侧边长对应长方形的宽度。第i本书的长度为h[i],宽度为w[i]。你可以选择任意几本书分出任意的堆数。但是,叠放的时候要注意,每本书两两之间都保持上下左右四条边平行,不能旋转。每组叠放好的书都会在桌面上占据一定的面积。例如我们将3本书叠放在一堆里:第一本长度为1宽度为4,第二本长度为2宽度为3,第三本长度为3宽度为2,这三本占据的面积为长度为3宽度为4的长方形面积,也就是3*4=12。

目前,已知你的书籍满足一种特殊顺序:你发现随着编号i增加,书的长度h[i]增加,宽度w[i]减少。请问,经过合理叠放后,总体占据的面积最小是多少?

这是一道dp题,可以用朴素

朴素

cin>>n;
for(ll i=1;i<=n;i++) cin>>bk[i].h>bk[i].w;
for(ll i=1;i<=n;++i){f[i]=bk[1].w*bk[i]*h;for(ll j=1;j<i;++j)f[i]=min(f[i],f[j]+bk[j+1].w*bk[i].h);
}

优化

这个看起来像直线最值吗

解释完毕

索道选址II

题目描述

lester的老家有一个著名的旅游景点:大牛山。据说爬完就能成为C++大牛,所以游客不断。从山脚到山顶共有n个景点,排成一条直线。山顶为景点n,并且只有这一条登山路线orz。由于山太高,当地政府决定架设若干条索道站点。索道站点山上某个景点,并且到山顶(景点n)是必须有索道站点的。在景点i修建索道站点的花费为Ai。对于没有索道直达的景点,游客会乘坐高于该景点且最近的一个索道站点,然后从该站点向下走到目的地。步行游客会产生一定的不满意度,值等于索道站点与目的地编号之差。你可以认为想去每个景点的游客人数是相同的,例如索道站点在景点3,6,则去景点4需要先到景点6,然后向下走到景点4,不满意度为6-4=2。lester既不想花太多钱,又不愿意积累太多的不满意度。注意:游客出发的位置可以理解为在0号,而不是1号。他希望求一种折衷方案,使得花费与不满意度总和最小。

f[i]表示用前i个选址覆盖前i个景点最小代价,且上一段为j。则不满意度为

也就是j+1加到i-1。

最后,我们以-j为斜率,f[j]+1/2*(j+1)*j为截距画直线

这篇关于Peter算法小课堂—动态规划斜率优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/898586

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表