llama-factory SFT系列教程 (二),大模型在自定义数据集 lora 训练与部署

2024-04-12 21:44

本文主要是介绍llama-factory SFT系列教程 (二),大模型在自定义数据集 lora 训练与部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 简介
    • 支持的模型列表
    • 2. 添加自定义数据集
    • 3. lora 微调
    • 4. 大模型 + lora 权重,部署
      • 问题
    • 参考资料

简介

  • llama-factory SFT系列教程 (一),大模型 API 部署与使用
  • 本文为 llama-factory SFT系列教程的第二篇;

支持的模型列表

模型名模型大小默认模块Template
Baichuan27B/13BW_packbaichuan2
BLOOM560M/1.1B/1.7B/3B/7.1B/176Bquery_key_value-
BLOOMZ560M/1.1B/1.7B/3B/7.1B/176Bquery_key_value-
ChatGLM36Bquery_key_valuechatglm3
DeepSeek (MoE)7B/16B/67Bq_proj,v_projdeepseek
Falcon7B/40B/180Bquery_key_valuefalcon
Gemma2B/7Bq_proj,v_projgemma
InternLM27B/20Bwqkvintern2
LLaMA7B/13B/33B/65Bq_proj,v_proj-
LLaMA-27B/13B/70Bq_proj,v_projllama2
Mistral7Bq_proj,v_projmistral
Mixtral8x7Bq_proj,v_projmistral
OLMo1B/7Batt_projolmo
Phi-1.5/21.3B/2.7Bq_proj,v_proj-
Qwen1.8B/7B/14B/72Bc_attnqwen
Qwen1.50.5B/1.8B/4B/7B/14B/72Bq_proj,v_projqwen
StarCoder23B/7B/15Bq_proj,v_proj-
XVERSE7B/13B/65Bq_proj,v_projxverse
Yi6B/9B/34Bq_proj,v_projyi
Yuan2B/51B/102Bq_proj,v_projyuan

参考自:https://zhuanlan.zhihu.com/p/689333581

  • 默认模块 作为 --lora_target 参数的默认值,也可使用 --lora_target all 参数指定全部模块;

  • –template 参数可以是 default, alpaca, vicuna 等任意值。但“对话”(Chat)模型请务必使用对应的模板。

项目所支持模型的完整列表请参阅 constants.py。

2. 添加自定义数据集

LLaMA-Factory 数据集说明,参考该文件给出的说明,在dataset_info.json 文件中添加配置信息;

参考如下数据集格式,定义自定义数据集;

[{"instruction": "用户指令(必填)","input": "用户输入(选填)","output": "模型回答(必填)","system": "系统提示词(选填)","history": [["第一轮指令(选填)", "第一轮回答(选填)"],["第二轮指令(选填)", "第二轮回答(选填)"]]}
]

新数据集内容如下:
diy.json

[{"instruction": "你是谁?","input": "","output": "我是Qwen,edit by JieShin.","history": []},{"instruction": "你能帮我干些什么?","input": "","output": "我能和你互动问答,我的其他功能正在开发中。","history": []}
]

添加自定义数据集的步骤如下:

  1. diy.json 文件保存到 LLaMA-Factory/data 文件夹下;

在这里插入图片描述

  1. 在 dataset_info.json 文件中,配置数据集
    首先计算 diy.json 文件的sha1sum, sha1sum diy.json
    在这里插入图片描述
    vim dataset_info.json 添加自定义数据集的配置信息, 把 diy.json 文件的sha1 值添加到文件中,"diy" 为该数据集名;
    在这里插入图片描述

3. lora 微调

使用配置好的 diy 数据集进行模型训练;

--model_name_or_path qwen/Qwen-7B,只写模型名,不写绝对路径可运行成功,因为配置了export USE_MODELSCOPE_HUB=1

查看 配置是否生效,输出1 即为配置成功:
echo $USE_MODELSCOPE_HUB

在这里插入图片描述

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path qwen/Qwen-7B \
--dataset diy \
--template qwen \
--finetuning_type lora \
--lora_target c_attn \
--output_dir /mnt/workspace/llama_factory_demo/qwen/lora/sft \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_strategy epoch \
--learning_rate 5e-5 \
--num_train_epochs 50.0 \
--plot_loss \
--fp16

训练完成的lora 权重,保存在下述文件夹中;
--output_dir /mnt/workspace/llama_factory_demo/qwen/lora/sft

模型的训练结果如下:
在这里插入图片描述

lora 训练后的权重如下图所示:
在这里插入图片描述

4. 大模型 + lora 权重,部署

由于llama-factory 不支持 qwen 结合 lora 进行推理,故需要把 lora 权重融合进大模型成一个全新的大模型权重;

可查看如下链接,了解如何合并模型权重:merge_lora GitHub issue

下述是合并 lora 权重的脚本,全新大模型的权重保存到 export_dir 文件夹;

CUDA_VISIBLE_DEVICES=0 python src/export_model.py \--model_name_or_path qwen/Qwen-7B \--adapter_name_or_path /mnt/workspace/llama_factory_demo/qwen/lora/sft/checkpoint-50 \--template qwen \--finetuning_type lora \--export_dir /mnt/workspace/merge_w/qwen \--export_size 2 \--export_legacy_format False

使用融合后到大模型进行推理,model_name_or_path 为融合后的新大模型路径

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python src/api_demo.py \--model_name_or_path /mnt/workspace/merge_w/qwen \--template qwen \--infer_backend vllm \--vllm_enforce_eager \
~                             

模型请求脚本

curl -X 'POST' \'http://0.0.0.0:8000/v1/chat/completions' \-H 'accept: application/json' \-H 'Content-Type: application/json' \-d '{"model": "string","messages": [{"role": "user","content": "你能帮我做一些什么事情?","tool_calls": [{"id": "call_default","type": "function","function": {"name": "string","arguments": "string"}}]}],"tools": [{"type": "function","function": {"name": "string","description": "string","parameters": {}}}],"do_sample": true,"temperature": 0,"top_p": 0,"n": 1,"max_tokens": 128,"stream": false
}'

模型推理得到了和数据集中一样的结果,这说明 lora 微调生效了;
在这里插入图片描述

以为设置了 "stop": "<|endoftext|>",模型会在遇到结束符自动结束,但模型依然推理到了最长的长度后结束,设置的 stop 并没有生效;

在这里插入图片描述

llama-factory的作者表示还没有支持stop,万一未来支持了stop功能,大家可以关注这个issue support “stop” in api chat/completions #3114

问题

虽然设置了 "temperature": 0 , 但是模型的输出结果依然变动很大,运行3-4次后,才出现训练数据集中的结果;

参考资料

  • api 参数列表
  • 使用LLaMa-Factory简单高效微调大模型
    展示了支持的大模型列表;

这篇关于llama-factory SFT系列教程 (二),大模型在自定义数据集 lora 训练与部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/898318

相关文章

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

PyCharm 接入 DeepSeek最新完整教程

《PyCharm接入DeepSeek最新完整教程》文章介绍了DeepSeek-V3模型的性能提升以及如何在PyCharm中接入和使用DeepSeek进行代码开发,本文通过图文并茂的形式给大家介绍的... 目录DeepSeek-V3效果演示创建API Key在PyCharm中下载Continue插件配置Con

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首