[机器学习与深度学习] - No.1 基于Negative Sampling SKip-Gram Word2vec模型学习总结

本文主要是介绍[机器学习与深度学习] - No.1 基于Negative Sampling SKip-Gram Word2vec模型学习总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于Negative Sampling SKip-Gram Word2vec模型学习总结

1. Word2vec简介

Word2Vec是从大量文本语料中以无监督的方式学习语义知识的一种模型,它被大量地用在自然语言处理(NLP)中。那么它是如何帮助我们做自然语言处理呢?Word2Vec其实就是通过学习文本来用词向量的方式表征词的语义信息。Word2vec的结果是为了获得Word Embedding,我们又称为词嵌入。Word Embedding就是一个映射,将单词从原先所属的空间映射到新的多维空间中,也就是把原先词所在空间嵌入到一个新的空间中去。

Word2Vec模型实际上分为了两个部分,第一部分为建立模型,第二部分是通过模型获取嵌入词向量。基于训练数据构建一个神经网络,当这个模型训练好以后,我们并不会用这个训练好的模型处理新的任务,我们真正需要的是这个模型通过训练数据所学得的参数,例如隐层的权重矩阵。

如果之前了解过RNN 语言模型,会了解到,如果我们的词典中一共有10000个不同的词,那么我们每个词将会使用10000维的***one-hot***编码来表示。如果我们希望使用300维的特征向量代表每个词,我们设置模型的隐藏层节点为300维。输入层-隐藏层的权重矩阵为:10000X300维。那么权重矩阵的每一行即代表我们最后所需的word embedding

Word2vec模型结构:
这里写图片描述

输入层-隐藏层权重矩阵:
这里写图片描述

2. Skip-Gram

Word2Vec模型中,主要有Skip-Gram和CBOW两种模型,。Skip-Gram是给定中心词来预测上下文,CBOW是给定上下文,来预测中心词

这里写图片描述

如上图所示,蓝色是我们给定的中心词,上下两边绿色的字体表示我们中心词的上下文

这里写图片描述

1. 输入形式

Word2vec的输入形式为one-hot编码。假设从我们的训练文档中抽取出10000个唯一不重复的单词组成词汇表。我们对这10000个单词进行one-hot编码,得到的每个单词都是一个10000维的向量,向量每个维度的值只有0或者1,假如单词ants在词汇表中的出现位置为第3个,那么ants的向量就是一个第三维度取值为1,其他维都为0的10000维的向量(ants=[0, 0, 1, 0, …, 0])。

模型的输入如果为一个10000维的向量,那么输出也是一个10000维度(词汇表的大小)的向量,它包含了10000个概率,每一个概率代表着当前词是输入样本中output word的概率大小。

2. 样本形式

假设我们有一句话“The quick brown fox jumps over the lazy dog.”

  • 我们假设中间词为fox
  • 接下来,我们设置中心词fox的上下文范围。我们使用skip_window来表示我们从中心词的左右两侧选取的词的数量,num_skips 表示我们在中心词的上下文中选取作为输出词的数量。例如:当skip_window=2num_skips = 2,中心词为fox时 ,我们获得fox的上下文窗口为['quick','brown','jumps','over']。我们随机从窗口中选取两个词作为输出,那么我们的样本元组应该如同:('fox','brown')('fox','over')

这里写图片描述

如上图,列出了中心词所有的训练样本。在代码的实现过程中,我们会使用随机数来随机选取窗口中的输出词。

3. Negative Sampling

训练一个神经网络意味着要输入训练样本并且不断调整神经元的权重,从而不断提高对目标的准确预测。每当神经网络经过一个训练样本的训练,它的权重就会进行一次调整。语料词典的大小决定了我们的Skip-Gram神经网络将会拥有大规模的权重矩阵,所有的这些权重需要通过我们数以亿计的训练样本来进行调整,这是非常消耗计算资源的,并且实际中训练起来会非常慢。

1. 负采样简介

**负采样(negative sampling)**解决了这个问题,它是用来提高训练速度并且改善所得到词向量的质量的一种方法。不同于原本每个训练样本更新所有的权重,负采样每次让一个训练样本仅仅更新一小部分的权重,这样就会降低梯度下降过程中的计算量。

假如我们训练样本('fox','brown'),由于我们使用的是one-hot编码来表示词,我们期望对应“brown”单词的那个输出神经元输出1,其他剩余的所有输出神经元输出0,我们称所有输出为1的输出神经元对应的词为"positive"词,所有输出为0的神经元对应的词为"negative"词

使用负采样的方法,我们不对所有输出神经元对应的权值进行更新,只是随机选取几个"negative"词,更新他们对应的权重。当然,我们也会更新"positive"的对应权值。

如上面所述,加入我们有10000个单词,每个单词用300维表示,那么我们的权重矩阵为***10000x300***维的矩阵。我们每次更新需要更新3000000个值。如果我们只更新随机选取的5个"negative"单词和一个"positive"的权重,那么我们只需要更新1800个值,相当于之前0.06%的计算量。

2. 负采样点选取

本质上来说,一个单词备选做为"negative word"的概率和他出现的频率有关,出现频次越高的单词越容易备选做"negative word"。这就是我们对采样过程的一个大致要求,本质上是一个带权采样的问题。

我们使用一个比较通俗的描述来解释一下带权采样:

设词典D中的每个词 ω \omega ω 对应一个线段 l ( ω ) l(\omega) l(ω) ,长度为:
l e n ( ω ) = c o u n t e r ( ω ) ∑ u ∈ D c o u n t e r ( u ) len(\omega) = \frac{counter(\omega)}{\sum_{u\in D} counter(u)} len(ω)=uDcounter(u)counter(ω)
这里的counter()表示一个词在语料中出现的次数。现在将这些线段首位连接在一起,形成一个长度为1的单位线段,如果在线段上随机的打点,那么长度长(频率大)的线段被打中的概率就大

所以,根据 { l e n ( ) j } j = 0 N \{len()_j\}_{j=0}^N {len()j}j=0N 可以得到区间[0,1]上的一个非等距剖分,共有N个剖分区间

接着,我们引入区间[0,1]上的一个等距离剖分,剖分解点为 { m j } j = 0 M \{m_j\}^M_{j=0} {mj}j=0M ,其中M >> N, 如下图所示
这里写图片描述
如上图所示,采样就简单了。我们生成一个[1,M-1]之间的随机整数r,然后查看该整数r落在了哪个词对应的线段内,那么该单词就是采样点。如果碰巧遇到了’'positive word",那么就跳过重新选取。

在word2vec的C语言实现中,使用了下面的公式来计算单词被选做负样本的概率。每个单词被选为“negative words”的概率计算公式与其出现的频次有关。
P ( ω j ) = f ( ω j ) 3 4 ∑ j = 0 n ( f ( ω j ) 3 4 ) P(\omega_j) = \frac{{f(\omega_j)}^{\frac{3}{4}}}{\sum^n_{j=0} {(f(\omega_j)^{\frac{3}{4}})}} P(ωj)=j=0n(f(ωj)43)f(ωj)43
其中 f ( ω j ) f(\omega_j) f(ωj) 代表词 ω j {\omega_j} ωj 的在整个语料中出现的频次

####4. 参考文章:

http://blog.csdn.net/itplus/article/details/37998797

https://www.leiphone.com/news/201706/eV8j3Nu8SMqGBnQB.html

http://www.thushv.com/natural_language_processing/word2vec-part-1-nlp-with-deep-learning-with-tensorflow-skip-gram/

http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/

这篇关于[机器学习与深度学习] - No.1 基于Negative Sampling SKip-Gram Word2vec模型学习总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897396

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验