七月审稿之提升模型效果的三大要素:prompt、数据质量、训练策略(附PeerRead)

本文主要是介绍七月审稿之提升模型效果的三大要素:prompt、数据质量、训练策略(附PeerRead),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

我带队的整个大模型项目团队超过40人了,分六个项目组,每个项目组都是全职带兼职,且都会每周确定任务/目标/计划,然后各项目组各自做任务拆解,有时同组内任务多时 则2-4人一组 方便并行和讨论,每周文档记录当周工作内容,平时群内随时讨论 1-2周一次语音会,最后通过相关课程不断招募各项目组成员 ​​​

比如在我司审稿项目之前的工作中,我们依次想尽各种办法微调以下模型(我之外,包括且不限于阿荀、朝阳、三太子、文弱、鸿飞、apple、不染、贾斯丁等)

  1. 七月论文审稿GPT第1版:通过3万多篇paper和10多万的review数据微调RWKV
  2. 七月论文审稿GPT第2版:用一万多条paper-review数据集微调LLaMA2 7B最终反超GPT4
  3. 七月论文审稿GPT第2.5和第3版:分别微调GPT3.5、Llama2 13B以扩大对GPT4的优势
  4. 七月论文审稿GPT第3.2版和第3.5版:通过paper-review数据集分别微调Mistral、gemma
  5. 七月论文审稿GPT第4版:通过paper-review数据集微调Mixtral-8x7b,对GPT4胜率超过80%

如上文文末回复一读者的评论所说,“近期 我们一方面 等llama2 70b的结果,一方面 准备提高下数据的质量了”,故有了本文,而如何提高数据质量呢,便是我和我司审稿项目组在3月底登杜甫江阁时所确定的:一个是提高review的质量(从而考虑到可以提高GPT对一篇篇paper的多个review做多聚一摘要出来的大review的质量,由于是设计prompt从而让GPT做多聚一的摘要操作,故可以优化下该prompt),一个是看有没办法可以拿到review出来之前更早期的论文版本

第一部分 提升模型效果的三大要素:prompt、数据质量、训练策略

1.1 让GPT对Review做多聚一操作的摘要prompt的优化

如本文开头所说,当我们把各种模型都微调一遍之后,发现最终还是得回归到数据上,其中一个便是提高review的质量

在我们之前的一系列工作中,我们针对一篇篇论文的多个review做多聚一,且摘要出多个要点,从而,一篇paper 一条review,最后,就可以弄成qa对 去微调开源模型

而之前5k 15k条paper-review数据对中的review,就是根据旧prompt 通过GPT3.5 16K摘要出来的,但之前的旧prompt 比较简单,就4个点

  1. 重要性和新颖性
  2. 可能被接收的原因
  3. 可能被拒绝的原因
  4. 其他改进建议

现在,想把review摘要的更好些,好提高微调效果,说白了,如果摘要出来的review质量不够高,会非常影响咱们微调模型的效果

总之,咱们的核心目标还是

不断逼近顶会审稿人的视角,以一针见血指出论文的问题、闪光点,从而侧面帮助作者修订论文

在经过反复看一系列论文的review意见之后我个人的反复琢磨,以及七月平台上一系列顶会审稿人对审稿的意见,外加和审稿项目组阿荀、朝阳等人的反复讨论之后,暂定把摘要prompt优化如下(至于完整的prompt设计见七月官网的:大模型商用项目之审稿GPT实战)

  1. ** How to evaluate the idea of the paper **, 
  2. ** Compared to previous similar works, what are the essential differences **, 
  3. ** How to evaluate the experimental results in the paper **, 
  4. ** Possible reasons for its acceptance **, 
  5. ** Possible reasons for its rejection **, 
  6. ** Other suggestions for improving the quality of the paper **, 
  7. and ** Other important review comments **.

总的思路就是,对于一篇paper,先看它的重要性、新颖性以及与众不同之处;接着看实验是否充分有说服力,然后总结闪光点、不足;最后看如果改进,看往哪几个方面做改进

1.2 论文早期版本的爬取

把各种模型都微调对比一遍之后,最后还是要再次回归到数据上,所以4.3日,我又开始反复琢磨之前阿荀爬下来的review数据

结果当晚意外解决了困扰我和我司审稿项目组一两月的一个问题,即之前没有找到review所对应的论文早期版本(review是旧review 但论文是新论文),而那晚在反复琢磨review数据时,发现可爬到review对应的论文早期版本 ​​​

从而,也就解决了审稿项目的一个大问题,毕竟我们要的就是这种论文所对应的 最早的审稿版本,这样和review的匹配程度 才能达到100%((至于如何具体爬取见七月官网的:大模型商用项目之审稿GPT实战)

1.3 训练策略

在大模型时代

  • 一个技术人保持竞争力的最佳方式就两点:保持对最新技术/paper的跟踪,每天各种大量实践/折腾/实验
  • ​对于一个组织也是如此,通过项目(大队伍 + 小队伍双重协作),是提高组织战斗力的最佳方式,不然各自为战 ​​​

// 待更

第二部分 相关工作之PeerRead:根据review给paper的各方面要点打分

paper读多了,便不再唯一关注阅读速度 因为大部分情况下 读的快没啥用(但少部分情况下 还是有用的),更多时候,更重要的是理解效率和理解深度,有时多看看参考文献中的论文,都会很有收获

读多了,便能在某一个时间点达到“量变引起质变”的效果,也就是在面对一个个新技术点时的开窍速度,会越来越快

2.1 康奈尔大学关于论文审稿的工作:特异性很强

  1. 用PGE方法从人工review中生成预设问题数据
    相当于paper =》 人工review =》通过PGE:即llama2 70B提炼预设问题 =》预设问题
  2. 使用 [paper, 预设问题] 数据训练得到一个能根据不同paper提出不同问题的模型A
    相当于让模型A学会根据不同的paper提问(毕竟,每篇review的预设问题不太一样),毕竟提问是门艺术
  3. 使用 [paper + A产生的预设问题, review] 训练得到模型B
    用的时候就是把不同的paper输入模型A来产生对应的预设问题,然后再把paper和预设问题输入模型B来得到review
  4. 和人工review对比词的叠度

// 待更

2.2 PeerRead:根据review给paper的各方面要点打分

昨晚在思考:如何评判一篇论文是否是好论文,或是否可以中稿顶会,然后无意中看到这篇论文:A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications

可以好好读一下

// 待更

这篇关于七月审稿之提升模型效果的三大要素:prompt、数据质量、训练策略(附PeerRead)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897117

相关文章

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API