【MATLAB源码-第185期】基于matlab的16QAM系统相位偏移估计EOS算法仿真,对比补偿前后的星座图误码率。

本文主要是介绍【MATLAB源码-第185期】基于matlab的16QAM系统相位偏移估计EOS算法仿真,对比补偿前后的星座图误码率。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

操作环境:

MATLAB 2022a

1、算法描述

1. 引言

M-QAM调制技术的重要性

现代通信系统追求的是更高的数据传输速率和更有效的频谱利用率。M-QAM调制技术,作为一种高效的调制方案,能够通过在相同的带宽条件下传输更多的数据位来满足这一需求。M-QAM通过调整信号的幅度和相位来编码信息,使得每个符号能够携带多个比特信息,从而大幅度提高了数据传输速率。

相偏的影响

然而,M-QAM系统的性能受到多种因素的影响,其中相偏是一个重要的技术挑战。相偏可以由多种原因引起,包括硬件缺陷、信号传输过程中的失真等。它会导致接收信号的相位与预期的相位出现偏差,从而使得解调后的数据出现错误,降低系统的传输质量和可靠性。

EOS算法的引入

为了解决相偏问题,EOS算法被提出并应用于相偏的估计和校正。EOS算法能够在不需要先验信息的情况下,通过分析接收信号的统计特性来估计相偏角度。这种盲相位搜索方法为M-QAM系统的相偏校正提供了一种有效的解决方案。

2. M-QAM调制技术概述

基本原理

M-QAM调制通过在两个正交的载波上调制信号,同时利用幅度和相位的变化来编码信息。这种调制技术能够在保持带宽不变的情况下传输大量数据,因为它将信息编码到每个符号的幅度和相位上,而每个符号可以表示多个比特。随着M值的增加,系统的数据传输速率也随之增加,但相应地,系统对信噪比的要求也更高,因为符号间的区分度减小。

星座图

M-QAM的星座图是一个用于表示所有可能符号的图形,其中每个符号都由其幅度和相位唯一确定。在理想条件下,这些符号在星座图上均匀分布。然而,在实际通信系统中,由于噪声、相偏等因素的影响,接收到的符号可能会从其理想位置偏离,导致符号判决错误。

3. 相偏的来源与影响

相偏产生的原因

相偏可以由多种原因引起,包括但不限于:

  • 硬件缺陷,如振荡器的不稳定性;
  • 信号传输过程中的失真,如非线性失真、多径传播效应;
  • 环境因素,如温度变化导致的设备性能波动。
相偏对系统性能的影响

相偏会导致接收信号的相位与发送信号的相位不匹配,从而使得解调后的数据出现错误。在M-QAM调制系统中,即使是较小的相偏也可能导致严重的符号错误,特别是在高阶M-QAM系统中,符号间的距离更小,系统对相偏更为敏感。

4. EOS算法原理

算法概述

EOS算法通过分析接收信号的四次统计量来估计相偏角度。该算法不依赖于传输的数据或额外的相位参考信号,因此被称为盲相位搜索方法。通过计算接收信号的四次幂和二次幂统计量,并利用这些统计量之间的关系,EOS算法能够估计出相偏角度。

数学模型

EOS算法的数学模型基于接收信号的高阶统计特性。算法首先计算接收信号的四次幂和二次幂统计量,然后通过这些统计量计算出与相偏相关的参数。最后,利用这些参数通过数学推导估计出相偏角度。

算法步骤
  1. 计算接收信号的四次幂和二次幂统计量;
  2. 根据统计量计算与相偏相关的参数;
  3. 利用相关参数估计相偏角度;
  4. 根据估计的相偏角度对信号进行校正。

5. EOS算法的MATLAB实现

信号生成与相偏模拟

使用MATLAB代码生成M-QAM信号,并模拟相偏的影响。这一步骤涉及到信号的调制、相偏的添加以及信号的噪声模拟。

相偏估计与校正

提供MATLAB代码实现EOS算法的核心步骤,包括相偏的估计和信号的校正。代码应包含详细的注释,解释每一步的功能和目的。

6. 性能评估

仿真设置

描述用于评估EOS算法性能的仿真设置,包括信噪比范围、相偏大小、以及M-QAM调制阶数等参数。

结果分析

展示EOS算法在不同条件下的性能,包括相偏估计的准确性、校正后信号的质量以及系统的误码率等。使用图表和图形直观地展示仿真结果,并对结果进行分析和讨论。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

      V

点击下方名片

这篇关于【MATLAB源码-第185期】基于matlab的16QAM系统相位偏移估计EOS算法仿真,对比补偿前后的星座图误码率。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/895560

相关文章

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Python实现Microsoft Office自动化的几种方式及对比详解

《Python实现MicrosoftOffice自动化的几种方式及对比详解》办公自动化是指利用现代化设备和技术,代替办公人员的部分手动或重复性业务活动,优质而高效地处理办公事务,实现对信息的高效利用... 目录一、基于COM接口的自动化(pywin32)二、独立文件操作库1. Word处理(python-d