【路径规划】基于matlab一种带交叉因子的双向寻优粒子群栅格地图最短路径规划【含Matlab源码 117期】

本文主要是介绍【路径规划】基于matlab一种带交叉因子的双向寻优粒子群栅格地图最短路径规划【含Matlab源码 117期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、双向寻优粒子群及栅格地图简介

1 双向寻优粒子群简介
针对传统粒子群算法易早熟、精度低、后期收敛速度慢等问题,结合反向学习理论,提出了一种基于交叉因子的双向寻优粒子群优化算法(CBMPSO)。该算法使初始种群在搜索区域均匀分布,计算粒子及其反向粒子的适应值,取最优作为初始种群;迭代过程增加对全局最差粒子的跟踪,随机开启基于交叉因子的双向学习机制。对几种典型函数的测试结果表明,CBMPSO算法的寻优能力及收敛速度有了显著提高,并且能够有效避免早熟收敛问题。

2 栅格地图简介

2 栅格地图
2.1 栅格法应用背景
路径规划时首先要获取环境信息, 建立环境地图, 合理的环境表示有利于建立规划方法和选择合适的搜索算法,最终实现较少的时间开销而规划出较为满意的路径。一般使用栅格法在静态环境下建立环境地图。
2.2 栅格法实质
将AGV的工作环境进行单元分割, 将其用大小相等的方块表示出来,这样栅格大小的选取是影响规划算法性能的一个很重要的因素。栅格较小的话,由栅格地图所表示的环境信息将会非常清晰,但由于需要存储较多的信息,会增大存储开销,同时干扰信号也会随之增加,规划速度会相应降低,实时性得不到保证;反之,由于信息存储量少,抗干扰能力有所增强,规划速随之增快,但环境信息划分会变得较为模糊,不利于有效路径的规划。在描述环境信息时障碍物所在区域在栅格地图中呈现为黑色,地图矩阵中标为1,可自由通行区域在栅格地图中呈现为白色,地图矩阵中标为0。路径规划的目的就是在建立好的环境地图中找到一条最优的可通行路径,所以使用栅格法建立环境地图时,栅格大小的合理设定非常关键。
2.3 10乘10的静态环境地图
在这里插入图片描述
10乘10的静态环境地图代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境地图%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DrawMap(map)
n = size(map);
step = 1;
a = 0 : step :n(1);
b = 0 : step :n(2);
figure(1)
axis([0 n(2) 0 n(1)]); %设置地图横纵尺寸
set(gca,'xtick',b,'ytick',a,'GridLineStyle','-',...
'xGrid','on','yGrid','on');
hold on
r = 1;
for(i=1:n(1))         %设置障碍物的左下角点的x,y坐标for(j=1:n(2))if(map(i,j)==1)p(r,1)=j-1;p(r,2)=i-1;fill([p(r,1) p(r,1) + step p(r,1) + step p(r,1)],...[p(r,2) p(r,2) p(r,2) + step p(r,2) + step ],'k');r=r+1;hold onendend
end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%栅格数字标识%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x_text = 1:1:n(1)*n(2); %产生所需数值.
for i = 1:1:n(1)*n(2)[row,col] = ind2sub([n(2),n(1)],i);text(row-0.9,col-0.5,num2str(x_text(i)),'FontSize',8,'Color','0.7 0.7 0.7');
end
hold on
axis square

建立环境矩阵,1代表黑色栅格,0代表白色栅格,调用以上程序,即可得到上述环境地图。

map=[0 0 0 1 0 0 1 0 0 0;1 0 0 0 0 1 1 0 0 0;0 0 1 0 0 0 1 1 0 0;0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 1 0 0 1 0;1 0 0 0 0 1 1 0 0 0;0 0 0 1 0 0 0 0 0 0;1 1 1 0 0 0 1 0 0 0;0 0 0 0 0 1 1 0 0 0;0 0 0 0 0 1 1 0 0 0;];DrawMap(map);         %得到环境地图

2.4 栅格地图中障碍栅格处路径约束
移动体栅格环境中多采用八方向的移动方式,此移动方式在完全可通行区域不存在运行安全问题,当
移动体周围存在障碍栅格时此移动方式可能会发生与障碍物栅格的碰撞问题,为解决此问题加入约束
条件,当在分别与障碍物栅格水平方向和垂直方向的可行栅格两栅格之间通行时,禁止移动体采用对
角式移动方式。
在这里插入图片描述
在这里插入图片描述
约束条件的加入,实质是改变栅格地图的邻接矩阵,将障碍栅格(数字为“1”的矩阵元素)的对角栅格
设为不可达, 即将对角栅格的距离值改为无穷大。其实现MATLAB代码如下:
代码:

%约束移动体在障碍栅格对角运动
%通过优化邻接矩阵实现
%%%%%%%%%%%%%%%%%% 约束移动体移动方式 %%%%%%%%%%%%%%%%%
function W=OPW(map,W)
% map 地图矩阵  % W 邻接矩阵
n = size(map);
num = n(1)*n(2);
for(j=1:n(1))for(z=1:n(2))if(map(j,z)==1)if(j==1)                  %若障碍物在第一行if(z==1)               %若障碍物为第一行的第一个W(j+1,j+n(2)*j)=Inf;W(j+n(2)*j,j+1)=Inf;elseif(z==n(2))         %若障碍物为第一行的最后一个W(n(2)-1,n(2)+n(1)*j)=Inf;W(n(2)+n(1)*j,n(2)-1)=Inf;else                %若障碍物为第一行的其他W(z-1,z+j*n(2))=Inf;W(z+j*n(2),z-1)=Inf;W(z+1,z+j*n(2))=Inf;W(z+j*n(2),z+1)=Inf;endendendif(j==n(1))               %若障碍物在最后一行if(z==1)               %若障碍物为最后一行的第一个W(z+n(2)*(j-2),z+n(2)*(j-1)+1)=Inf;W(z+n(2)*(j-1)+1,z+n(2)*(j-2))=Inf;elseif(z==n(2))            %若障碍物为最后一行的最后一个W(n(1)*n(2)-1,(n(1)-1)*n(2))=Inf;W((n(1)-1)*n(2),n(1)*n(2)-1)=Inf;else                   %若障碍物为最后一行的其他W((j-2)*n(2)+z,(j-1)*n(2)+z-1)=Inf;W((j-1)*n(2)+z-1,(j-2)*n(2)+z)=Inf;W((j-2)*n(2)+z,(j-1)*n(2)+z+1)=Inf;W((j-1)*n(2)+z+1,(j-2)*n(2)+z)=Inf;endendendif(z==1)              if(j~=1&&j~=n(1))       %若障碍物在第一列非边缘位置 W(z+(j-2)*n(2),z+1+(j-1)*n(2))=Inf;W(z+1+(j-1)*n(2),z+(j-2)*n(2))=Inf;W(z+1+(j-1)*n(2),z+j*n(2))=Inf;W(z+j*n(2),z+1+(j-1)*n(2))=Inf;endendif(z==n(2))if(j~=1&&j~=n(1))         %若障碍物在最后一列非边缘位置 W((j+1)*n(2),j*n(2)-1)=Inf;W(j*n(2)-1,(j+1)*n(2))=Inf;W(j*n(2)-1,(j-1)*n(2))=Inf;W((j-1)*n(2),j*n(2)-1)=Inf;endendif(j~=1&&j~=n(1)&&z~=1&&z~=n(2))   %若障碍物在非边缘位置W(z+(j-1)*n(2)-1,z+j*n(2))=Inf;W(z+j*n(2),z+(j-1)*n(2)-1)=Inf;W(z+j*n(2),z+(j-1)*n(2)+1)=Inf;W(z+(j-1)*n(2)+1,z+j*n(2))=Inf;W(z+(j-1)*n(2)-1,z+(j-2)*n(2))=Inf;W(z+(j-2)*n(2),z+(j-1)*n(2)-1)=Inf;W(z+(j-2)*n(2),z+(j-1)*n(2)+1)=Inf;W(z+(j-1)*n(2)+1,z+(j-2)*n(2))=Inf;endendendend
end

2.5 栅格法案例
下面以Djkstra算法为例, 其实现如下:

map=[0 0 0 1 0 0 1 0 0 0;1 0 0 0 0 1 1 0 0 0;0 0 1 0 0 0 1 1 0 0;0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 1 0 0 1 0;1 0 0 0 0 1 1 0 0 0;0 0 0 1 0 0 0 0 0 0;1 1 1 0 0 0 1 0 0 0;0 0 0 0 0 1 1 0 0 0;0 0 0 0 0 1 1 0 0 0;];%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境矩阵map%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
DrawMap(map); %得到环境地图
W=G2D(map);   %得到环境地图的邻接矩阵
W(W==0)=Inf;  %邻接矩阵数值处理
W=OPW(map,W); %优化邻接矩阵
[distance,path]=dijkstra(W,1,100);%设置起始栅格,得到最短路径距离以及栅格路径
[x,y]=Get_xy(distance,path,map);   %得到栅格相应的x,y坐标
Plot(distance,x,y);   %画出路径

运行结果如下:
在这里插入图片描述
其中函数程序:
DrawMap(map) 详见建立栅格地图
W=G2D(map) ; 详见建立邻接矩阵
[distance, path] =dijkstra(W, 1, 100) 详见Djk stra算法
[x, y] =Get_xy(distance, path, map) ;
Plot(distance, x, y) ;

⛄二、部分源代码

clc;
close all
clear
load(‘data4.mat’)
S=(S_coo(2)-0.5)*num_shange+(S_coo(1)+0.5);%起点对应的编号
E=(E_coo(2)-0.5)*num_shange+(E_coo(1)+0.5);%终点对应的编号

PopSize=20;%种群大小
OldBestFitness=0;%旧的最优适应度值
gen=0;%迭代次数
maxgen =100;%最大迭代次数

c1=0.5;%认知系数
c2=0.7;%社会学习系数
c3=0.2;%反向因子
w=0.96;%惯性系数
%%
%初始化路径
w_min=0.5;
w_max=1;
Group=ones(num_point,PopSize); %种群初始化
flag=1;
%% 初始化粒子群位置
for i=1:PopSize
p_lin=randperm(num_point)';%随机生成1*400不重复的行向量
%% 将起点编号放在首位
index=find(p_linS);
lin=p_lin(1);
p_lin(1)=p_lin(index);
p_lin(index)=lin;
Group(:,i)=p_lin;
%%将每个个体进行合理化处理
[Group(:,i),flag]=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);
fangxiang_Group(:,i)=fangxiang(Group(:,i),c3);%方向粒子数量
while flag
1%如处理不成功,则初始化个体,重新处理
%% 将起点编号放在首位
index=find(p_lin==S);
lin=p_lin(1);
p_lin(1)=p_lin(index);
p_lin(index)=lin;
Group(:,i)=p_lin;
fangxiang_Group(:,i)=p_lin;
%%将每个个体进行合理化处理
[Group(:,i),flag]=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);
[fangxiang_Group(:,i),flag]=deal_fun(fangxiang_Group(:,i),num_point,liantong_point,E,num_shange);
end

end

%初始化粒子速度(即交换序)
Velocity =zeros(num_point,PopSize);
for i=1:PopSize
Velocity(:,i)=round(rand(1,num_point)'*num_point/10); %round取整
end

%计算每个个体对应路径的距离
for i=1:PopSize
EachPathDis(i) = PathDistance(Group(:,i)‘,E,num_shange);
EachPathDis_fangxiang(i) = PathDistance(fangxiang_Group(:,i)’,E,num_shange);
end

IndivdualBest=Group;%记录各粒子的个体极值点位置,即个体找到的最短路径
IndivdualBestFitness=EachPathDis;%记录最佳适应度值,即个体找到的最短路径的长度
if min(EachPathDis)<min(EachPathDis_fangxiang)
[GlobalBestFitness,index]=min(EachPathDis);%找出全局最优值和相应序号
else
[GlobalBestFitness,index]=min(EachPathDis_fangxiang);%找出全局最优值和相应序号
end
%寻优
while gen < maxgen
w=w_max-(w_max-w_min)*gen/maxgen;%自适应权重
%迭代次数递增
gen = gen +1
%更新全局极值点位置,这里指路径
for i=1:PopSize
if min(EachPathDis)<min(EachPathDis_fangxiang)

    GlobalBest(:,i) = Group(:,index);elseGlobalBest(:,i) = fangxiang_Group(:,index);end
end%求pij-xij ,pgj-xij交换序,并以概率c1,c2的保留交换序
pij_xij=GenerateChangeNums(Group,IndivdualBest);  %根据个体最优解求交换序
pij_xij=HoldByOdds(pij_xij,c1);%以概率c1保留交换序
pgj_xij=GenerateChangeNums(Group,GlobalBest);%根据全局最优解求交换序
pgj_xij=HoldByOdds(pgj_xij,c2);%以概率c2保留交换序pfj_xij=GenerateChangeNums(Group,fangxiang_Group);%根据反向求交换序
pfj_xij=HoldByOdds(pfj_xij,c3);%以概率c3保留交换序
%以概率w保留上一代交换序
Velocity=HoldByOdds(Velocity,w);Group = PathExchange(Group,pfj_xij);%根据反向粒子位置进行交换
Group = PathExchange(Group,Velocity); %根据交换序进行路径交换
Group = PathExchange(Group,pij_xij);%粒子位置变换通过速度、全局性适应度和个体适应度对比来交换来实现,完成自我学习和社会学习
Group = PathExchange(Group,pgj_xij);for i = 1:PopSize[Group(:,i),flag]=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);while flag==1p_lin=randperm(num_point)';index=find(p_lin==S);lin=p_lin(1);p_lin(1)=p_lin(index);p_lin(index)=lin;Group(:,i)=p_lin;[Group(:,i),flag]=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);end
end
for i = 1:PopSize    % 更新各路径总距离EachPathDis(i) = PathDistance(Group(:,i)',E,num_shange);
end
IsChange = EachPathDis<IndivdualBestFitness;%更新后的距离优于更新前的,记录序号
IndivdualBest(:, find(IsChange)) = Group(:, find(IsChange));%更新个体最佳路径
IndivdualBestFitness = IndivdualBestFitness.*( ~IsChange) + EachPathDis.*IsChange;%更新个体最佳路径距离
[GlobalBestFitness, index] = min(IndivdualBestFitness);%更新全局最佳路径,记录相应的序号if GlobalBestFitness~=OldBestFitness %比较更新前和更新后的适应度值;OldBestFitness=GlobalBestFitness;%不相等时更新适应度值best_route=IndivdualBest(:,index)';
end
BestFitness(gen) =GlobalBestFitness;%每一代的最优适应度

end
%最优解
index1=find(best_route==E);
route_lin=best_route(1:index1);

%最优解
figure(3)
hold on
for i=1:num_shange
for j=1:num_shange
if sign(i,j)==1
y=[i-1,i-1,i,i];
x=[j-1,j,j,j-1];
h=fill(x,y,‘k’);
set(h,‘facealpha’,0.5)
end
s=(num2str((i-1)*num_shange+j));
text(j-0.95,i-0.5,s,‘fontsize’,6)
end
end
axis([0 num_shange 0 num_shange])%限制图的边界
plot(S_coo(2),S_coo(1), ‘p’,‘markersize’, 10,‘markerfacecolor’,‘b’,‘MarkerEdgeColor’, ‘m’)%画起点
plot(E_coo(2),E_coo(1),‘o’,‘markersize’, 10,‘markerfacecolor’,‘g’,‘MarkerEdgeColor’, ‘c’)%画终点
set(gca,‘YDir’,‘reverse’);%图像翻转
for i=1:num_shange
plot([0 num_shange],[i-1 i-1],‘k-’);
plot([i i],[0 num_shange],‘k-’);%画网格线
end
for i=2:index1
Q1=[mod(route_lin(i-1)-1,num_shange)+1-0.5,ceil(route_lin(i-1)/num_shange)-0.5];
Q2=[mod(route_lin(i)-1,num_shange)+1-0.5,ceil(route_lin(i)/num_shange)-0.5];
plot([Q1(1),Q2(1)],[Q1(2),Q2(2)],‘r’,‘LineWidth’,3)
end
title(‘粒子群算法-最优路线’);

%进化曲线
figure(4);
plot(BestFitness);
xlabel(‘迭代次数’)
ylabel(‘适应度值’)
grid on;
title(‘进化曲线’);
disp(‘粒子群算法-最优路线方案:’)
disp(num2str(route_lin))
disp([‘起点到终点的距离:’,num2str(BestFitness(end))]);
figure(5);
plot(BestFitness*100);
xlabel(‘迭代次数’)
ylabel(‘适应度值’)
grid on;
title(‘最佳个体适应度值变化趋势’);

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]温雅,李国,徐晨.一种带交叉因子的双向寻优粒子群优化算法[J].计算机应用研究. 2013,30(01)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【路径规划】基于matlab一种带交叉因子的双向寻优粒子群栅格地图最短路径规划【含Matlab源码 117期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893671

相关文章

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

csu1329(双向链表)

题意:给n个盒子,编号为1到n,四个操作:1、将x盒子移到y的左边;2、将x盒子移到y的右边;3、交换x和y盒子的位置;4、将所有的盒子反过来放。 思路分析:用双向链表解决。每个操作的时间复杂度为O(1),用数组来模拟链表,下面的代码是参考刘老师的标程写的。 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL