【语音识别】基于matlab语音分帧+端点检测+pitch提取+DTW算法歌曲识别【含Matlab源码 1057期】

本文主要是介绍【语音识别】基于matlab语音分帧+端点检测+pitch提取+DTW算法歌曲识别【含Matlab源码 1057期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、DTW简介

Dynamic Time Warping(DTW)诞生有一定的历史了(日本学者Itakura提出),它出现的目的也比较单纯,是一种衡量两个长度不同的时间序列的相似度的方法。应用也比较广,主要是在模板匹配中,比如说用在孤立词语音识别(识别两段语音是否表示同一个单词),手势识别,数据挖掘和信息检索等中。

1 概述
在大部分的学科中,时间序列是数据的一种常见表示形式。对于时间序列处理来说,一个普遍的任务就是比较两个序列的相似性。
在时间序列中,需要比较相似性的两段时间序列的长度可能并不相等,在语音识别领域表现为不同人的语速不同。因为语音信号具有相当大的随机性,即使同一个人在不同时刻发同一个音,也不可能具有完全的时间长度。而且同一个单词内的不同音素的发音速度也不同,比如有的人会把“A”这个音拖得很长,或者把“i”发的很短。在这些复杂情况下,使用传统的欧几里得距离无法有效地求的两个时间序列之间的距离(或者相似性)。

2 DTW方法原理
在时间序列中,需要比较相似性的两段时间序列的长度可能并不相等,在语音识别领域表现为不同人的语速不同。而且同一个单词内的不同音素的发音速度也不同,比如有的人会把“A”这个音拖得很长,或者把“i”发的很短。另外,不同时间序列可能仅仅存在时间轴上的位移,亦即在还原位移的情况下,两个时间序列是一致的。在这些复杂情况下,使用传统的欧几里得距离无法有效地求的两个时间序列之间的距离(或者相似性)。
DTW通过把时间序列进行延伸和缩短,来计算两个时间序列性之间的相似性:
在这里插入图片描述
如上图所示,上下两条实线代表两个时间序列,时间序列之间的虚线代表两个时间序列之间的相似的点。DTW使用所有这些相似点之间的距离的和,称之为归整路径距离(Warp Path Distance)来衡量两个时间序列之间的相似性。

3 DTW计算方法
令要计算相似度的两个时间序列为X和Y,长度分别为|X|和|Y|。
归整路径(Warp Path)
归整路径的形式为W=w1,w2,…,wK,其中Max(|X|,|Y|)<=K<=|X|+|Y|。
wk的形式为(i,j),其中i表示的是X中的i坐标,j表示的是Y中的j坐标。
归整路径W必须从w1=(1,1)开始,到wK=(|X|,|Y|)结尾,以保证X和Y中的每个坐标都在W中出现。
另外,W中w(i,j)的i和j必须是单调增加的,以保证图1中的虚线不会相交,所谓单调增加是指:
在这里插入图片描述
在这里插入图片描述
上图为代价矩阵(Cost Matrix) D,D(i,j)表示长度为i和j的两个时间序列之间的归整路径距离。

⛄二、部分源代码

clc;
clear;
close all;
waveFile = sprintf(‘同桌的你.wav’);% 同桌的你 女儿情 回梦游仙 滴答 彩虹
% 读取波形—端点检测—切音框
waveFile=‘同桌的你.wav’;
pivFile = sprintf(‘同桌的你.piv’);
pivFile=[‘mfcc’ pivFile];
[y,fs]=audioread(waveFile); %读取原文件
figure
subplot(221)
plot(y);
title(‘原图形’);

frame = PointDetect(waveFile);  %端点检测
subplot(222)
plot(frame);
title('端点检测');subplot(223)
pitch=wave2pitch(frame,fs);   %计算音高
plot(pitch);
title('音高');

function [pitch, pdf, frameEstimated, excitation]=frame2pitch(frame, opt, showPlot)
% frame2acf: PDF (periodicity detection function) of a given frame (primarily for pitch tracking)
%
% Usage:
% out=frame2pdf(frame, opt, showPlot);
% frame: Given frame
% opt: Options for PDF computation
% opt.pdf: PDF function to be used
% ‘acf’ for ACF
% ‘amdf’ for AMDF
% ‘nsdf’ for NSDF
% ‘acfOverAmdf’ for ACF divided by AMDF
% ‘hps’ for harmonics product sum
% ‘ceps’ for cepstrum
% opt.maxShift: no. of shift operations, which is equal to the length of the output vector
% opt.method: 1 for using the whole frame for shifting
% 2 for using the whole frame for shifting, but normalize the sum by it’s overlap area
% 3 for using frame(1:frameSize-maxShift) for shifting
% opt.siftOrder: order of SIFT (0 for not using SIFT)
% showPlot: 0 for no plot, 1 for plotting the frame and ACF output
% out: the returned PDF vector
%
% Example:
% waveFile=‘soo.wav’;
% au=myAudioRead(waveFile);
% frameSize=256;
% frameMat=enframe(au.signal, frameSize);
% frame=frameMat(:, 292);
% opt=ptOptSet(au.fs, au.nbits, 1);
% opt.alpha=0;
% pitch=frame2pitch(frame, opt, 1);
%
% See also frame2acf, frame2amdf, frame2nsdf.

% Roger Jang 20020404, 20041013, 20060313

if nargin<1, selfdemo; return; end
if nargin<2||isempty(opt), opt=ptOptSet(8000, 16, 1); end
if nargin<3, showPlot=0; end

%% ====== Preprocessing
%save frame frame
frame=frameZeroMean(frame, opt.zeroMeanPolyOrder);
%frame=frameZeroMean(frame, 0);

frameEstimated=[];
excitation=[];
if opt.siftOrder>0
[frameEstimated, excitation, coef]=sift(frame, opt.siftOrder); % Simple inverse filtering tracking
frame=excitation;
end
frameSize=length(frame);
maxShift=min(frameSize, opt.maxShift);

switch lower(opt.pdf)
case ‘acf’
% pdf=frame2acf(frame, maxShift, opt.method);
pdf=frame2acfMex(frame, maxShift, opt.method);
% if opt.method1
% pdfWeight=1+linspace(0, opt.alpha, length(pdf))';
% pdf=pdf.*pdfWeight; % To avoid double pitch error (esp for violin). 20110416
% end
% if opt.method
2
% pdfWeight=1-linspace(0, opt.alpha, length(pdf))‘; % alpha is less than 1.
% pdf=pdf.pdfWeight; % To avoid double pitch error (esp for violin). 20110416
% end
pdfLen=length(pdf);
pdfWeight=opt.alpha+pdfLen
(1-opt.alpha)./(pdfLen-(0:pdfLen-1)’);
pdf=pdf.pdfWeight; % alpha=0==>normalized ACF, alpha=1==>tapering ACF
case ‘amdf’
% amdf=frame2amdf(frame, maxShift, opt.method);
amdf=frame2amdfMex(frame, maxShift, opt.method);
pdf=max(amdf)
(1-linspace(0,1,length(amdf))')-amdf;
case ‘nsdf’
% pdf=frame2nsdf(frame, maxShift, opt.method);
pdf=frame2nsdfMex(frame, maxShift, opt.method);
case ‘acfoveramdf’
opt.pdf=‘acf’;
[acfPitch, acf] =feval(mfilename, frame, opt);
opt.pdf=‘amdf’;
[amdfPitch, amdf]=feval(mfilename, frame, opt);
pdf=0*acf;
pdf(2:end)=acf(2:end)./amdf(2:end);
case ‘hps’
[pdf, freq]=frame2hps(frame, opt.fs, opt.zeroPaddedFactor);
case ‘ceps’
pdf=frame2ceps(frame, opt.fs, opt.zeroPaddedFactor);
otherwise
error(‘Unknown PDF=%s!’, opt.pdf);
end

switch lower(opt.pdf)
case {‘acf’, ‘amdf’, ‘nsdf’, ‘amdf4pt’, ‘acfoveramdf’, ‘ceps’}
n1=floor(opt.fs/opt.freqRange(2)); % pdf(1:n1) will not be used
n2= ceil(opt.fs/opt.freqRange(1)); % pdf(n2:end) will not be used
if n2>length(pdf), n2=length(pdf); end
% Update n1 such that pdf(n1)<=pdf(n1+1)
while n1<n2 & pdf(n1)>pdf(n1+1), n1=n1+1; end
% Update n2 such that pdf(n2)<=pdf(n2-1)
while n2>n1 & pdf(n2)>pdf(n2-1), n2=n2-1; end
pdf2=pdf;
pdf2(1:n1)=-inf;
pdf2(n2:end)=-inf;
[maxValue, maxIndex]=max(pdf2);
if isinf(maxValue) || maxIndexn1+1 || maxIndexn2-1
pitch=0; maxIndex=nan; maxValue=nan;
elseif opt.useParabolicFit
deviation=optimViaParabolicFit(pdf(maxIndex-1:maxIndex+1));
maxIndex=maxIndex+deviation;
pitch=freq2pitch(opt.fs/(maxIndex-1));
else
pitch=freq2pitch(opt.fs/(maxIndex-1));
end
case {‘hps’}
pdf2=pdf;
pdf2(freq<opt.freqRange(1)|freq>opt.freqRange(2))=-inf;
[maxValue, maxIndex]=max(pdf2);
% if opt.useParabolicFit
% deviation=optimViaParabolicFit(pdf(maxIndex-1:maxIndex+1));
% maxIndex=maxIndex+deviation;
% end
pitch=freq2pitch(freq(maxIndex));
otherwise
error(‘Unknown PDF=%s!’, opt.pdf);
end

if showPlot
subplot(2,1,1);
plot(frame, ‘.-’);
set(gca, ‘xlim’, [-inf inf]);
title(‘Input frame’);
subplot(2,1,2);
plot(1:length(pdf), pdf, ‘.-’, 1:length(pdf2), pdf2, ‘.r’);
line(maxIndex, maxValue, ‘marker’, ‘^’, ‘color’, ‘k’);
set(gca, ‘xlim’, [-inf inf]);
title(sprintf(‘%s vector (opt.method = %d)’, opt.pdf, opt.method));
end

% ====== Self demo
function selfdemo
mObj=mFileParse(which(mfilename));
strEval(mObj.example);

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【语音识别】基于matlab语音分帧+端点检测+pitch提取+DTW算法歌曲识别【含Matlab源码 1057期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893356

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Java后端接口中提取请求头中的Cookie和Token的方法

《Java后端接口中提取请求头中的Cookie和Token的方法》在现代Web开发中,HTTP请求头(Header)是客户端与服务器之间传递信息的重要方式之一,本文将详细介绍如何在Java后端(以Sp... 目录引言1. 背景1.1 什么是 HTTP 请求头?1.2 为什么需要提取请求头?2. 使用 Spr

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖