【BP数据预测】基于matlab灰狼算法优化BP神经网络GWO-BP数据预测【含Matlab源码 1728期】

2024-04-11 04:38

本文主要是介绍【BP数据预测】基于matlab灰狼算法优化BP神经网络GWO-BP数据预测【含Matlab源码 1728期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、灰狼算法及BP神经网络简介

1 BP算法
BP (Back—Propagation) 神经网络是由Rumelhart, McClelland提出的概念, 其结构简单、可操作性强, 具有非线性映射能力, 是目前应用最广泛的人工神经网络。但BP算法存在收敛速度慢、容易陷入局部最优等缺陷, 在很大程度上影响了预测结果。BP模型如图1所示, 该模型包括输入层、隐层、输出层, 其中W、V为连接权矩阵, 跨层的神经元之间则不连接。
在这里插入图片描述
图1 BP神经网络结构图
BP神经网络算法由信号的正向传播和误差的反向传播两个过程组成。正向传播, 输入信号通过隐含层处理, 经过非线性变换, 转向输出层产生输出信号, 若输出值与期望值不符, 则转入反向传播过程。误差反传是将输出误差信号通过隐含层向输入层逐层反传, 通过修改各神经元的权值, 使误差沿梯度方向下降, 这样反复学习训练, 直到输出的误差达到要求或者达到最大迭代次数, 训练停止。
(1)权值初始化
将网络中的所有权值随机初始化。
(2) 根据实例的输入, 计算输出层每个单元的输出。
网络的实际输出及隐层单元的状态Okj, 由公式 (1) 计算:
在这里插入图片描述
公式中, θj是阈值, 一般可采用Sigmoid函数, 即公式 (2) 作为激励函数作用于它。
在这里插入图片描述
(3) 计算网络各层误差信号
对于输出层的每个单元k, 误差δk, 由公式 (3) 计算:
在这里插入图片描述
Ok是单元k的实际输出值, Ok (1-Ok) 是Logistic函数的导数, 而Tk是基于k给定训练元组的已知目标值。
而对于隐藏层单元h的误差由公式 (4) 计算:
在这里插入图片描述
(4)调整各层的权值
公式 (5) 是权值的更新公式, 公式 (6) 阈值的更新公式。
在这里插入图片描述
(5)核查算法是否符合结束条件
如果网络总误差满足设定的精度要求或符合结束条件, 训练过程结束。否则, 继续进行下一轮训练。

2 GWO算法
GWO算法是Mirjalil等人2014年提出的一种新型群智能优化算法, 该算法通过模拟自然界中灰狼的狩猎跟踪、追捕、包围和攻击等建立一个数学模型, 进而完成最优化工作。整个狼群按照适应度值被分为最优灰狼α、次优灰狼β、第三优灰狼β和其他狼ω四个等级。在捕食过程中α、β、δ灰狼追捕猎物, ω狼追随前三者进向着目标搜索。捕食过程中, 灰狼个体与猎物的距离为:
在这里插入图片描述
公式中t表示迭代次数;Xp (t) 是猎物的位置, X (t) 表示第t代时灰狼的位置, D表示猎物与灰狼之间的距离, C=2r1。
灰狼位置更新为:
在这里插入图片描述
其中, a是收敛因子, 取值[0, 2], max是最大迭代次数;r2和r2均是[0, 1]的随机数:当|A|>1时, 灰狼群体将搜索范围扩大, 进行全局搜索;|A|<1时, 灰狼群体将包围圈缩小, 进行局部搜索。

在狼群中, 利用α、β、δ这三头狼的位置跟踪猎物的数学描述如下:
在这里插入图片描述
式 (12) 和式 (13) 定义了狼群内ω与α、β、δ的距离关系。
在这里插入图片描述
式 (13) 根据α、β、δ的位置计算ω狼的最终位置。

3 GWO优化BP神经网络
由于BP神经网络采用均方误差梯度下降方向进行收敛, 因此容易陷入局部最优, 且收敛速度慢, 而且BP神经网络对初始化参数中的权值和阀值具有较大的敏感性。本文采用GWO优化BP神经网络, 以达到克服BP算法的缺陷, 避免陷入局部最优, 而且使收敛加速。
用GWO优化BP神经网络, 即将灰狼的位置信息作为BP神经网络的权重和阈值, 灰狼不断对猎物的位置进行判断和更新, 相当于在不断更新BP神经网络的阈值和权重, 通过多次迭代, 最终计算全局最优结果。优化BP神经网络具体步骤:
1.初始化参数。包括灰狼种群大小、灰狼个体位置信息的维度、灰狼维度的上界和下界, 最大迭代次数、随机初始化灰狼位置。
2.将灰狼的位置映射给BP神经网络, 按照公式计算适应度
3.适应度值的计算:狼群内部按照等级被分为最优、次优、第三优、和普通狼四组, 并根据与的位置, 用公式 (11) ~ (13) 更新的位置信息, 并更新参数a、A和C的值。
4.判断灰狼个体的每一维度越界情况, 如有越界, 把灰狼维度的上界或下界设置为越界的值。
5.判断迭代次数:如果小于最大迭代次数, 重复步骤2-步骤5, 继续下一次迭代, 直到满足条件;否则结束算法。

⛄二、部分源代码

1. 代码注释清楚。
2. 提供代码使用教程,可以换用个人数据,以及运行得到GWO-BP相关图像与对指定数据的预测结果。
3. 如有问题,请私信我。

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]于淑香,温一军.基于GWO-BP算法的软件缺陷预测模型[J].安徽电子信息职业技术学院学报. 2018,17(06)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【BP数据预测】基于matlab灰狼算法优化BP神经网络GWO-BP数据预测【含Matlab源码 1728期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893099

相关文章

Java嵌套for循环优化方案分享

《Java嵌套for循环优化方案分享》介绍了Java中嵌套for循环的优化方法,包括减少循环次数、合并循环、使用更高效的数据结构、并行处理、预处理和缓存、算法优化、尽量减少对象创建以及本地变量优化,通... 目录Java 嵌套 for 循环优化方案1. 减少循环次数2. 合并循环3. 使用更高效的数据结构4

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数