kinect学习笔记四(距离变换 distance tranform 和opencv像素访问方式)

本文主要是介绍kinect学习笔记四(距离变换 distance tranform 和opencv像素访问方式),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当时自己理解的一点小误区,放到这里防止再犯错。

距离变换的基本意思就是计算一个图像中非零像素点到最近的零像素点的距离,也就是到所有零像素点的最短距离。建立距离变换图像可以方便提取骨骼

在opencv中有专门的函数cvDistTransform来计算距离变换图像。

DistTransform
计算输入图像的所有非零元素对其最近零元素的距离void cvDistTransform( const CvArr* src, CvArr* dst, int distance_type=CV_DIST_L2,int mask_size=3, const float* mask=NULL );
src
输入 8-比特、单通道 (二值) 图像.
dst
含计算出的距离的输出图像(32-比特、浮点数、单通道).
distance_type
距离类型; 可以是 CV_DIST_L1, CV_DIST_L2, CV_DIST_C 或 CV_DIST_USER.
mask_size
距离变换掩模的大小,可以是 3 或 5. 对 CV_DIST_L1 或 CV_DIST_C 的情况,参数值被强制设定为 3, 因为 3×3 mask 给出 5×5 mask 一样的结果,而且速度还更快。
mask
用户自定义距离距离情况下的 mask。 在 3×3 mask 下它由两个数(水平/垂直位量,对角线位移量)组成, 5×5 mask 下由三个数组成(水平/垂直位移量,对角位移和 国际象棋里的马步(马走日)) 
函数 cvDistTransform 二值图像每一个象素点到它最邻近零象素点的距离。对零象素,函数设置 0 距离,对其它象素,它寻找由基本位移(水平、垂直、对角线或knight's move,最后一项对 5×5 mask 有用)构成的最短路径。 全部的距离被认为是基本距离的和。由于距离函数是对称的,所有水平和垂直位移具有同样的代价 (表示为 a ), 所有的对角位移具有同样的代价 (表示为 b), 所有的 knight's 移动具有同样的代价 (表示为 c). 对类型 CV_DIST_C 和 CV_DIST_L1,距离的计算是精确的,而类型 CV_DIST_L2 (欧式距离) 距离的计算有某些相对误差 (5×5 mask 给出更精确的结果), OpenCV 使用 [Borgefors86] 推荐的值:CV_DIST_C (3×3):
a=1, b=1CV_DIST_L1 (3×3):
a=1, b=2CV_DIST_L2 (3×3):
a=0.955, b=1.3693CV_DIST_L2 (5×5):
a=1, b=1.4, c=2.1969

其中mask刚开始不是很理解,经过模拟数据得到了其含义。

距离计算
2b?2a b
?bab?
2aa0a2a
?bab?
b?a?b

a\b分别表示在水平垂直方向的距离,?/问号部分表示根据a和b的值的大小再确定其值。
如果定义了c值(用户自定义mask或者选择CV_DIST_L2等)在变为

a,b,c
2bc2ac2b
cbabc
2aa0a2a
cbabc
2bc2ac2b

所以定义c的时候必须是5*5的mask,然后在往外扩充的时候类似上面的问号类型,找到最小距离即可。

下面代码表示自己创建一个9*9的矩阵,然后利用该函数计算其值:

//距离变换代码,在微软的那个ppt中用来计算掌心的位置可能用到这个
//部分内容在http://www.opencv.org.cn/forum/viewtopic.php?f=1&t=4574&start=0有解释#include <iostream>
#include "highgui.h"
#include "cv.h"using namespace std;int main()
{IplImage *src = cvCreateImage(cvSize(9, 9), 8, 1);cvZero(src);uchar *ptr = (uchar*)(src->imageData);*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0; *ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 0;*ptr++ = 0; *ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255; *ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255; *ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 0;*ptr++ = 255;*ptr++ = 0;*ptr++ = 255;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0; ptr +=3;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;IplImage *dist = cvCreateImage( cvGetSize(src), IPL_DEPTH_32F, 1 );cvDistTransform( src, dist, CV_DIST_L1, 3, NULL, NULL );/*cvConvertScale( dist, dist, 1000.0, 0 );cvShowImage("dist2", dist);cvPow( dist, dist, 0.5 );cvShowImage("dist3", dist);IplImage *dist32s = cvCreateImage(cvGetSize(src), IPL_DEPTH_32S, 1);cvConvertScale( dist, dist32s, 1.0, 0.5 );cvShowImage("dist32s", dist32s);cvAndS( dist32s, cvScalarAll(255), dist32s, 0 );cvShowImage("dist32s2", dist32s);IplImage *dist8u1 = cvCloneImage(src);cvConvertScale( dist32s, dist8u1, 1, 0 );cvShowImage("dist8u1", dist8u1);*/for (int y=0; y<src->height; y++){uchar *pt = (uchar*)(src->imageData+y*src->widthStep);for (int x=0; x<src->width; x++){cout << int(pt[x]) << '\t';}cout << endl;}cout << endl << endl;for (int y=0; y<dist->height; y++){float *p = (float *)(dist->imageData+y*dist->widthStep);//因为输出图像必须是浮点型数据,所以这里必须采用float。也是自己一开始做错的。虽然IplImage->imageData是char型的,但是针对不同类型(字节型浮点型)要有不同的处理方式for (int x=0; x<dist->width; x++){cout << float(p[x]) << '\t';}cout << endl;}cvShowImage("src",src);cvShowImage("dist", dist);cvWaitKey(0);return 0;}
运行结果



如果将距离运算改为CV_DIST_L2运行结果:




因为一开始栽倒数据访问上了,所以有必要将opencv中像素访问方式贴出来,方便以后查阅。csnd编辑界面太差了,一堆乱码,大家还是移步到:http://www.opencv.org.cn/index.php/OpenCV_编程简介(矩阵/图像/视频的基本读写操作)

这篇关于kinect学习笔记四(距离变换 distance tranform 和opencv像素访问方式)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/888132

相关文章

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

C#TextBox设置提示文本方式(SetHintText)

《C#TextBox设置提示文本方式(SetHintText)》:本文主要介绍C#TextBox设置提示文本方式(SetHintText),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录C#TextBox设置提示文本效果展示核心代码总结C#TextBox设置提示文本效果展示核心代

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

Android实现打开本地pdf文件的两种方式

《Android实现打开本地pdf文件的两种方式》在现代应用中,PDF格式因其跨平台、稳定性好、展示内容一致等特点,在Android平台上,如何高效地打开本地PDF文件,不仅关系到用户体验,也直接影响... 目录一、项目概述二、相关知识2.1 PDF文件基本概述2.2 android 文件访问与存储权限2.

Spring中配置ContextLoaderListener方式

《Spring中配置ContextLoaderListener方式》:本文主要介绍Spring中配置ContextLoaderListener方式,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录Spring中配置ContextLoaderLishttp://www.chinasem.cntene

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

AJAX请求上传下载进度监控实现方式

《AJAX请求上传下载进度监控实现方式》在日常Web开发中,AJAX(AsynchronousJavaScriptandXML)被广泛用于异步请求数据,而无需刷新整个页面,:本文主要介绍AJAX请... 目录1. 前言2. 基于XMLHttpRequest的进度监控2.1 基础版文件上传监控2.2 增强版多