LeetCode-347. 前 K 个高频元素【数组 哈希表 分治 桶排序 计数 快速选择 排序 堆(优先队列)】

本文主要是介绍LeetCode-347. 前 K 个高频元素【数组 哈希表 分治 桶排序 计数 快速选择 排序 堆(优先队列)】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LeetCode-347. 前 K 个高频元素【数组 哈希表 分治 桶排序 计数 快速选择 排序 堆(优先队列)】

  • 题目描述:
  • 解题思路一:哈希表记录出现次数,然后用最小堆取,因为每次都是弹出最小的,剩下的一定是K个最大的。
  • 解题思路二:直接排序
  • 解题思路三:堆
  • 解题思路三:快速排序

题目描述:

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。

示例 1:

输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
示例 2:

输入: nums = [1], k = 1
输出: [1]

提示:

1 <= nums.length <= 105
k 的取值范围是 [1, 数组中不相同的元素的个数]
题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的

进阶:你所设计算法的时间复杂度 必须 优于 O(n log n) ,其中 n 是数组大小。

解题思路一:哈希表记录出现次数,然后用最小堆取,因为每次都是弹出最小的,剩下的一定是K个最大的。

import heapq # 默认是最小堆
class Solution:def topKFrequent(self, nums: List[int], k: int) -> List[int]:map_ = {}for i in range(len(nums)):map_[nums[i]] = map_.get(nums[i], 0) + 1pri_que = []for key, freq in map_.items():heapq.heappush(pri_que, (freq, key))if len(pri_que) > k: heapq.heappop(pri_que)result = [0] * kfor i in range(k-1, -1, -1):result[i] = heapq.heappop(pri_que)[1]return result

时间复杂度:O(nlogk)
空间复杂度:O(n)

解题思路二:直接排序

class Solution:def topKFrequent(self, nums: List[int], k: int) -> List[int]:count = collections.Counter(nums)return [item[0] for item in count.most_common(k)]

时间复杂度:O(nlogn)
空间复杂度:O(n)

解题思路三:堆

class Solution:def topKFrequent(self, nums: List[int], k: int) -> List[int]:count = collections.Counter(nums)heap = [(val, key) for key, val in count.items()]return [item[1] for item in heapq.nlargest(k, heap)]

时间复杂度:O(nlogn)
空间复杂度:O(n)

解题思路三:快速排序

在这里插入图片描述

class Solution:def topKFrequent(self, nums: List[int], k: int) -> List[int]:count = collections.Counter(nums)num_cnt = list(count.items())topKs = self.findTopK(num_cnt, k, 0, len(num_cnt) - 1)return [item[0] for item in topKs]def findTopK(self, num_cnt, k, low, high):pivot = random.randint(low, high)num_cnt[low], num_cnt[pivot] = num_cnt[pivot], num_cnt[low]base = num_cnt[low][1]i = lowfor j in range(low + 1, high + 1):if num_cnt[j][1] > base:num_cnt[i + 1], num_cnt[j] = num_cnt[j], num_cnt[i + 1]i += 1num_cnt[low], num_cnt[i] = num_cnt[i], num_cnt[low]if i == k - 1:return num_cnt[:k]elif i > k - 1:return self.findTopK(num_cnt, k, low, i - 1)else:return self.findTopK(num_cnt, k, i + 1, high)

时间复杂度:O(n)
空间复杂度:O(n)

这篇关于LeetCode-347. 前 K 个高频元素【数组 哈希表 分治 桶排序 计数 快速选择 排序 堆(优先队列)】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/887794

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W