YOLOV8 + 双目测距

2024-04-08 06:28
文章标签 yolov8 测距 双目

本文主要是介绍YOLOV8 + 双目测距,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLOV8 + 双目测距

  • 1. 环境配置
  • 2. 测距流程和原理
    • 2.1 测距流程
    • 2.2 测距原理
  • 3. 代码部分解析
    • 3.1 相机参数stereoconfig.py
    • 3.2 测距部分
    • 3.3 主代码yolov8-stereo.py
  • 4. 实验结果
    • 4.1 测距
    • 4.2 测距+跟踪
    • 4.3 测距+跟踪+分割
    • 4.4 视频展示

相关文章
1. YOLOv5+双目测距(python)
2. YOLOv7+双目测距(python)

如果有用zed相机,可以进我主页👇👇👇直接调用内部相机参数,精度比双目测距好很多
https://blog.csdn.net/qq_45077760

下载链接(求STAR):https://github.com/up-up-up-up/YOLOv8-stereo

1. 环境配置

具体可见: Windows+YOLOV8环境配置

2. 测距流程和原理

2.1 测距流程

大致流程: 双目标定→双目校正→立体匹配→结合yolov8→深度测距

  1. 找到目标识别源代码中输出物体坐标框的代码段。
  2. 找到双目测距代码中计算物体深度的代码段。
  3. 将步骤2与步骤1结合,计算得到目标框中物体的深度。
  4. 找到目标识别网络中显示障碍物种类的代码段,将深度值添加到里面,进行显示

注:我所做的是在20m以内的检测,没计算过具体误差,当然标定误差越小精度会好一点,其次注意光线、亮度等影响因素,当然检测范围效果跟相机的好坏也有很大关系
在这里插入图片描述

2.2 测距原理

如果想了解双目测距原理,请移步该文章 双目三维测距(python)

3. 代码部分解析

3.1 相机参数stereoconfig.py

双目相机标定误差越小越好,我这里误差为0.1,尽量使误差在0.2以下

import numpy as np
# 双目相机参数
class stereoCamera(object):def __init__(self):self.cam_matrix_left = np.array([[1101.89299, 0, 1119.89634],[0, 1100.75252, 636.75282],[0, 0, 1]])self.cam_matrix_right = np.array([[1091.11026, 0, 1117.16592],[0, 1090.53772, 633.28256],[0, 0, 1]])self.distortion_l = np.array([[-0.08369, 0.05367, -0.00138, -0.0009, 0]])self.distortion_r = np.array([[-0.09585, 0.07391, -0.00065, -0.00083, 0]])self.R = np.array([[1.0000, -0.000603116945856524, 0.00377055351856816],[0.000608108737333211, 1.0000, -0.00132288199083992],[-0.00376975166958581, 0.00132516525298933, 1.0000]])self.T = np.array([[-119.99423], [-0.22807], [0.18540]])self.baseline = 119.99423  

3.2 测距部分

这一部分我用了多线程加快速度,计算目标检测框中心点的深度值

config = stereoconfig_040_2.stereoCamera()
map1x, map1y, map2x, map2y, Q = getRectifyTransform(720, 1280, config)
thread = MyThread(stereo_threading, args=(config, im0, map1x, map1y, map2x, map2y, Q))
thread.start()
results = model.predict(im0, save=False, conf=0.5)
annotated_frame = results[0].plot()
boxes = results[0].boxes.xywh.cpu()
for i, box in enumerate(boxes):# for box, class_idx in zip(boxes, classes):x_center, y_center, width, height = box.tolist()x1 = x_center - width / 2y1 = y_center - height / 2x2 = x_center + width / 2y2 = y_center + height / 2if (0 < x2 < 1280):thread.join()points_3d = thread.get_result()# gol.set_value('points_3d', points_3d)a = points_3d[int(y_center), int(x_center), 0] / 1000b = points_3d[int(y_center), int(x_center), 1] / 1000c = points_3d[int(y_center), int(x_center), 2] / 1000distance = ((a ** 2 + b ** 2 + c ** 2) ** 0.5)

3.3 主代码yolov8-stereo.py

(1)加入了多线程处理,加快处理速度
(2)如果想打开相机,直接把cap = cv2.VideoCapture(‘a1.mp4’)改成cap = cv2.VideoCapture(0)即可

import cv2
import torch
import argparse
from ultralytics import YOLO
from stereo import stereoconfig_040_2
from stereo.stereo import stereo_40
from stereo.stereo import stereo_threading, MyThread
from stereo.dianyuntu_yolo import preprocess, undistortion, getRectifyTransform, draw_line, rectifyImage, \stereoMatchSGBMdef main():cap = cv2.VideoCapture('ultralytics/assets/a1.mp4')model = YOLO('yolov8n.pt')cv2.namedWindow('00', cv2.WINDOW_NORMAL)cv2.resizeWindow('00', 1280, 360)  # 设置宽高out_video = cv2.VideoWriter('output.avi', cv2.VideoWriter_fourcc(*'XVID'), 30, (2560, 720))while True:ret, im0 = cap.read()if not ret:print("Video frame is empty or video processing has been successfully completed.")break# img = cv2.cvtColor(image_net, cv2.COLOR_BGRA2BGR)config = stereoconfig_040_2.stereoCamera()map1x, map1y, map2x, map2y, Q = getRectifyTransform(720, 1280, config)thread = MyThread(stereo_threading, args=(config, im0, map1x, map1y, map2x, map2y, Q))thread.start()results = model.predict(im0, save=False, conf=0.5)annotated_frame = results[0].plot()boxes = results[0].boxes.xywh.cpu()for i, box in enumerate(boxes):# for box, class_idx in zip(boxes, classes):x_center, y_center, width, height = box.tolist()x1 = x_center - width / 2y1 = y_center - height / 2x2 = x_center + width / 2y2 = y_center + height / 2if (0 < x2 < 1280):thread.join()points_3d = thread.get_result()# gol.set_value('points_3d', points_3d)a = points_3d[int(y_center), int(x_center), 0] / 1000b = points_3d[int(y_center), int(x_center), 1] / 1000c = points_3d[int(y_center), int(x_center), 2] / 1000distance = ((a ** 2 + b ** 2 + c ** 2) ** 0.5)if (distance != 0):text_dis_avg = "dis:%0.2fm" % distancecv2.putText(annotated_frame, text_dis_avg, (int(x2 + 5), int(y1 + 30)), cv2.FONT_ITALIC, 1.2,(0, 255, 255), 3)cv2.imshow('00', annotated_frame)out_video.write(annotated_frame)key = cv2.waitKey(1)if key == 'q':breakout_video.release()cap.release()cv2.destroyAllWindows()if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--weights', type=str, default='yolov8n.pt', help='model.pt path(s)')parser.add_argument('--svo', type=str, default=None, help='optional svo file')parser.add_argument('--img_size', type=int, default=416, help='inference size (pixels)')parser.add_argument('--conf_thres', type=float, default=0.4, help='object confidence threshold')opt = parser.parse_args()with torch.no_grad():main()

4. 实验结果

可实现测距、跟踪和分割功能,实现不同功能仅需修改以下代码,具体见 此篇文章

4.1 测距

在这里插入图片描述

4.2 测距+跟踪

在这里插入图片描述

4.3 测距+跟踪+分割

在这里插入图片描述

4.4 视频展示

这篇关于YOLOV8 + 双目测距的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884804

相关文章

YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

01:YOLOv8 + DeepSort 车辆跟踪 该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。 02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线 在此基础上增加了用户

YOLOv8改进实战 | 注意力篇 | 引入CVPR2024 PKINet 上下文锚点注意力CAAttention

YOLOv8专栏导航:点击此处跳转 前言 YOLOv8 是由 YOLOv5 的发布者 Ultralytics 发布的最新版本的 YOLO。它可用于对象检测、分割、分类任务以及大型数据集的学习,并且可以在包括 CPU 和 GPU 在内的各种硬件上执行。 YOLOv8 是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新的功能和改进,以

【YOLO 系列】基于YOLOV8的智能花卉分类检测系统【python源码+Pyqt5界面+数据集+训练代码】

前言: 花朵作为自然界中的重要组成部分,不仅在生态学上具有重要意义,也在园艺、农业以及艺术领域中占有一席之地。随着图像识别技术的发展,自动化的花朵分类对于植物研究、生物多样性保护以及园艺爱好者来说变得越发重要。为了提高花朵分类的效率和准确性,我们启动了基于YOLO V8的花朵分类智能识别系统项目。该项目利用深度学习技术,通过分析花朵图像,自动识别并分类不同种类的花朵,为用户提供一个高效的花朵识别

YOLOv8改进 | Conv篇 | YOLOv8引入DWR

1. DWR介绍 1.1  摘要:当前的许多工作直接采用多速率深度扩张卷积从一个输入特征图中同时捕获多尺度上下文信息,从而提高实时语义分割的特征提取效率。 然而,这种设计可能会因为结构和超参数的不合理而导致多尺度上下文信息的访问困难。 为了降低多尺度上下文信息的绘制难度,我们提出了一种高效的多尺度特征提取方法,将原始的单步方法分解为区域残差-语义残差两个步骤。 在该方法中,多速率深度扩张卷积

yolov8 pt转onnx

第一步: 安装onnx pip install --upgrade onnx 第二步: 将以下代码创建、拷贝到yolov8根目录下。具体代码test.py: from ultralytics import YOLO# Load a modelmodel = YOLO('yolov8n.pt') # load an official model# Export the model

树莓派使用WiringPi库配合时间函数实现超声波测距

树莓派使用WiringPi库配合时间函数实现超声波测距 文章目录 树莓派使用WiringPi库配合时间函数实现超声波测距一、HR-04超声波模块原理1.1 超声波测距原理:1.2 超声波时序图: 二、树莓派与超声波模块硬件连接三、时间函数3.1 时间函数gettimeofday()原型和头文件: 四、实现超声波测距4.1 使用wiringOP库和时间函数实现超声波测距: 五、实现超声波测距

yolov5 +gui界面+单目测距 实现对图片视频摄像头的测距

可实现对图片,视频,摄像头的检测  项目概述 本项目旨在实现一个集成了YOLOv5目标检测算法、图形用户界面(GUI)以及单目测距功能的系统。该系统能够对图片、视频或实时摄像头输入进行目标检测,并估算目标的距离。通过结合YOLOv5的强大检测能力和单目测距技术,系统能够在多种应用场景中提供高效、准确的目标检测和测距功能。 技术栈 YOLOv5:用于目标检测的深度学习模型。Open

目标检测-YOLOv8

YOLOv8 YOLOv8 是 YOLO 系列的最新版本,它在 YOLOv7 的基础上进行了多项改进,主要侧重于进一步提升推理速度、检测精度以及模型的通用性。与之前版本相比,YOLOv8 引入了新的技术和优化策略,使其在多个方面更具优势。 相比 YOLOv7 的改进与优势 更加轻量化的网络架构 YOLOv8 进一步简化了网络结构,引入了新型的 EfficientRep 主干网络,在保证性能

基于opencv实现双目立体匹配点云距离

双目相机或两个单目相机。 一、相机标定 MATLAB软件,打开双目标定app。 点击add images,弹出加载图像的窗口,分别导入左图和右图,设置黑白格长度(标定板的长度一般为20)。 点击确定,弹出加载好的图像。 在菜单栏勾选2 Coefficients(鱼眼相机勾选3 Coefficients)、Tangential Distinction,点击Calibrate,显示

基于yolov8的包装盒纸板破损缺陷测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的包装盒纸板破损缺陷检测系统是一种高效、智能的解决方案,旨在提高生产线上包装盒纸板的质量检测效率与准确性。该系统利用YOLOv8这一前沿的深度学习模型,通过其强大的目标检测能力,能够实时识别并标记出包装盒纸板上的各种破损缺陷,如划痕、撕裂、孔洞等。 在系统中,首先需对包含破损缺陷的包装盒纸板图像进行数据采集和标注,形成训练数据集。随后,利用这些数据进行模型训练,使