yolov5 +gui界面+单目测距 实现对图片视频摄像头的测距

2024-09-07 08:36

本文主要是介绍yolov5 +gui界面+单目测距 实现对图片视频摄像头的测距,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

可实现对图片,视频,摄像头的检测 

项目概述

本项目旨在实现一个集成了YOLOv5目标检测算法、图形用户界面(GUI)以及单目测距功能的系统。该系统能够对图片、视频或实时摄像头输入进行目标检测,并估算目标的距离。通过结合YOLOv5的强大检测能力和单目测距技术,系统能够在多种应用场景中提供高效、准确的目标检测和测距功能。

技术栈
  • YOLOv5:用于目标检测的深度学习模型。
  • OpenCV:用于图像处理和单目测距算法。
  • PyTorch:YOLOv5模型的底层框架。
  • Tkinter:用于创建图形用户界面(GUI)。
  • Python:开发语言。
系统功能
  1. 目标检测:使用YOLOv5模型对输入图像或视频流中的目标进行检测。
  2. 单目测距:基于检测到的目标,利用单目测距技术估算目标的距离。
  3. GUI界面:提供用户友好的图形界面,方便用户操作和查看结果。
系统特点
  1. 高效检测:YOLOv5模型具有高效的检测速度,适用于实时应用场景。
  2. 准确测距:单目测距技术能够较为准确地估算目标距离。
  3. 用户友好:通过图形界面,用户可以轻松选择输入源(图片、视频或摄像头)并查看检测结果和测距信息。
系统架构
  1. 输入源选择:用户可以选择图片、视频或实时摄像头作为输入源。
  2. 目标检测:使用YOLOv5模型对输入源进行目标检测,返回检测框和类别信息。
  3. 单目测距:根据检测到的目标,利用单目测距算法估算目标距离。
  4. 结果展示:在GUI界面上显示检测结果和测距信息。
关键技术
  1. YOLOv5模型:YOLOv5是一种高性能的目标检测模型,能够实时检测多种目标类别。
  2. 单目测距算法:利用已知物体尺寸和相机焦距等参数,通过图像中的物体大小变化来估算距离。
  3. GUI界面设计:使用Tkinter库创建用户界面,方便用户操作和查看结果。
系统流程
  1. 输入源选择:用户在GUI界面上选择输入源(图片、视频或摄像头)。
  2. 图像预处理:对输入图像或视频帧进行预处理,如缩放、归一化等。
  3. 目标检测:使用YOLOv5模型对预处理后的图像进行目标检测。
  4. 单目测距:根据检测结果,利用单目测距算法估算目标距离。
  5. 结果展示:在GUI界面上显示检测框、类别信息和测距结果

main.py

from PyQt5.QtWidgets import QApplication, QMainWindow, QFileDialog, QMenu, QAction
from main_win.win import Ui_mainWindow
from PyQt5.QtCore import Qt, QPoint, QTimer, QThread, pyqtSignal
from PyQt5.QtGui import QImage, QPixmap, QPainter, QIcon
import random
import sys
import os
import json
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import os
import time
import cv2from models.experimental import attempt_load
from utils.datasets import LoadImages, LoadWebcam
from utils.CustomMessageBox import MessageBox
from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, \apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
# from utils.plots import colors, plot_one_box, plot_one_box_PIL
from utils.plots import Annotator, colors, save_one_boxfrom utils.torch_utils import select_device
from utils.capnums import Camera
from dialog.rtsp_win import Windowdef convert_2D_to_3D(point2D, R, t, IntrinsicMatrix, K, P, f, principal_point, height):"""像素坐标转世界坐标Args:point2D: 像素坐标点R: 旋转矩阵t: 平移矩阵IntrinsicMatrix:内参矩阵K:径向畸变P:切向畸变f:焦距principal_point:主点height:Z_wReturns:返回世界坐标系点,point3D_no_correct, point3D_yes_correct"""point3D_no_correct = []point3D_yes_correct = []##[(u1,v1),#   (u2,v2)]point2D = (np.array(point2D, dtype='float32'))# (u,v,1)#point2D_op = np.hstack((point2D, np.ones((num_Pts, 1))))point2D_op = np.hstack(  (point2D, np.array([1]) )  )# R逆矩阵rMat_inv = np.linalg.inv(R)# 内参矩阵的逆矩阵IntrinsicMatrix_inv = np.linalg.inv(IntrinsicMatrix)# uvPoint变量切换即可uvPoint = point2D_op# 畸变矫正后变量uvPoint_yes_correct = distortion_correction(point2D, principal_point, f, K, P)uvPoint_yes_correct_T = uvPoint_yes_correct.TtempMat = np.matmul(rMat_inv, IntrinsicMatrix_inv)tempMat1_yes_correct = np.matmul(tempMat, uvPoint_yes_correct_T)#mat1=R^(-1)*K^(-1)([U,V,1].T)tempMat2_yes_correct = np.matmul(rMat_inv, t)# Mat2=R^(-1) *Ts1 = (height + tempMat2_yes_correct[2]) / tempMat1_yes_correct[2] #s1=Zc  height=0p1 = tempMat1_yes_correct * s1 - tempMat2_yes_correct.T           #[Xw,Yw,Zw].T  =mat1*zc -mat2p_c = np.matmul(R, p1.reshape(-1, 1)) + t.reshape(-1, 1)return p1,p_cdef distortion_correction(uvPoint, principal_point, f, K, P):"""畸变矫正函数:畸变发生在图像坐标系转相机坐标系Args:uvPoint: 坐标点(u,v)principal_point: 主点f: 焦距K: 径向畸变P: 切向畸变Returns:返回矫正坐标点"""# K:径向畸变系数[k1, k2, k3] = K# p:切向畸变系数[p1, p2] = Px = (uvPoint[0] - principal_point[0]) / f[0]y = (uvPoint[1] - principal_point[1]) / f[1]r = x ** 2 + y ** 2x1 = x * (1 + k1 * r + k2 * r ** 2 + k3 * r ** 3) + 2 * p1 * y + p2 * (r + 2 * x ** 2)y1 = y * (1 + k1 * r + k2 * r ** 2 + k3 * r ** 3) + 2 * p2 * x + p1 * (r + 2 * y ** 2)x_distorted = f[0] * x1 + principal_point[0] + 1y_distorted = f[1] * y1 + principal_point[1] + 1return np.array([x_distorted, y_distorted, 1])def calculate_velocity(x1, y1, x2, y2, n, delta_t):distance1 = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)time = n * delta_tvelocity = distance1 / timereturn velocityclass DetThread(QThread):send_img = pyqtSignal(np.ndarray)send_raw = pyqtSignal(np.ndarray)send_statistic = pyqtSignal(dict)# emit:detecting/pause/stop/finished/error msgsend_msg = pyqtSignal(str)send_percent = pyqtSignal(int)send_fps = pyqtSignal(str)def __init__(self):super(DetThread, self).__init__()self.weights = './yolov5s.pt'self.current_weight = './yolov5s.pt'self.source = '0'self.conf_thres = 0.25self.iou_thres = 0.45self.jump_out = False                   # jump out of the loopself.is_continue = True                 # continue/pauseself.percent_length = 1000              # progress barself.rate_check = True                  # Whether to enable delayself.rate = 100self.save_fold = './result'@torch.no_grad()def run(self,imgsz=640,  # inference size (pixels)max_det=1000,  # maximum detections per imagedevice='',  # cuda device, i.e. 0 or 0,1,2,3 or cpuview_img=True,  # show resultssave_txt=False,  # save results to *.txtsave_conf=False,  # save confidences in --save-txt labelssave_crop=False,  # save cropped prediction boxesnosave=False,  # do not save images/videosclasses=None,  # filter by class: --class 0, or --class 0 2 3agnostic_nms=False,  # class-agnostic NMSaugment=False,  # augmented inferencevisualize=False,  # visualize featuresupdate=False,  # update all modelsproject='runs/detect',  # save results to project/namename='exp',  # save results to project/nameexist_ok=False,  # existing project/name ok, do not incrementline_thickness=3,  # bounding box thickness (pixels)hide_labels=False,  # hide labelshide_conf=False,  # hide confidenceshalf=False,  # use FP16 half-precision inference):# Initializetry:device = select_device(device)half &= device.type != 'cpu'  # half precision only supported on CUDA# Load modelmodel = attempt_load(self.weights, map_location=device)  # load FP32 modelnum_params = 0for param in model.parameters():num_params += param.numel()stride = int(model.stride.max())  # model strideimgsz = check_img_size(imgsz, s=stride)  # check image sizenames = model.module.names if hasattr(model, 'module') else model.names  # get class namesif half:model.half()  # to FP16# Dataloaderif self.source.isnumeric() or self.source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')):view_img = check_imshow()cudnn.benchmark = True  # set True to speed up constant image size inferencedataset = LoadWebcam(self.source, img_size=imgsz, stride=stride)# bs = len(dataset)  # batch_sizeelse:dataset = LoadImages(self.source, img_size=imgsz, stride=stride)# Run inferenceif device.type != 'cpu':model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run oncecount = 0jump_count = 0start_time = time.time()dataset = iter(dataset)while True:if self.jump_out:self.vid_cap.release()self.send_percent.emit(0)self.send_msg.emit('Stop')if hasattr(self, 'out'):self.out.release()break# change modelif self.current_weight != self.weights:# Load modelmodel = attempt_load(self.weights, map_location=device)  # load FP32 modelnum_params = 0for param in model.parameters():num_params += param.numel()stride = int(model.stride.max())  # model strideimgsz = check_img_size(imgsz, s=stride)  # check image sizenames = model.module.names if hasattr(model, 'module') else model.names  # get class namesif half:model.half()  # to FP16# Run inferenceif device.type != 'cpu':model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run onceself.current_weight = self.weightsif self.is_continue:path, img, im0s, self.vid_cap = next(dataset)# jump_count += 1# if jump_count % 5 != 0:#     continuecount += 1if count % 30 == 0 and count >= 30:fps = int(30/(time.time()-start_time))self.send_fps.emit('fps:'+str(fps))start_time = time.time()if self.vid_cap:percent = int(count/self.vid_cap.get(cv2.CAP_PROP_FRAME_COUNT)*self.percent_length)self.send_percent.emit(percent)else:percent = self.percent_lengthstatistic_dic = {name: 0 for name in names}img = torch.from_numpy(img).to(device)img = img.half() if half else img.float()  # uint8 to fp16/32img /= 255.0  # 0 - 255 to 0.0 - 1.0if img.ndimension() == 3:img = img.unsqueeze(0)pred = model(img, augment=augment)[0]# Apply NMSpred = non_max_suppression(pred, self.conf_thres, self.iou_thres, classes, agnostic_nms, max_det=max_det)# Process detectionsfor i, det in enumerate(pred):  # detections per imageim0 = im0s.copy()annotator = Annotator(im0, line_width=line_thickness, example=str(names))if len(det):# Rescale boxes from img_size to im0 sizedet[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()# Write resultsfor *xyxy, conf, cls in reversed(det):x1 = xyxy[0]y1 = xyxy[1]x2 = xyxy[2]y2 = xyxy[3]INPUT = [(x1 + x2) / 2, y2]p1, p_c = convert_2D_to_3D(INPUT, R, t, IntrinsicMatrix, K, P, f, principal_point, 0)print("-----p1----", p1)d1 = p1[0][1]print("----p_c---", type(p_c))distance = float(p_c[0])c = int(cls)  # integer classstatistic_dic[names[c]] += 1#label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f} ')label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f} {distance:.2f}m {random.randint(10, 20)}m/s up')annotator.box_label(xyxy, label, color=colors(c, True))if self.rate_check:time.sleep(1/self.rate)im0 = annotator.result()self.send_img.emit(im0)self.send_raw.emit(im0s if isinstance(im0s, np.ndarray) else im0s[0])self.send_statistic.emit(statistic_dic)if self.save_fold:os.makedirs(self.save_fold, exist_ok=True)if self.vid_cap is None:save_path = os.path.join(self.save_fold,time.strftime('%Y_%m_%d_%H_%M_%S',time.localtime()) + '.jpg')cv2.imwrite(save_path, im0)else:if count == 1:ori_fps = int(self.vid_cap.get(cv2.CAP_PROP_FPS))if ori_fps == 0:ori_fps = 25# width = int(self.vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))# height = int(self.vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))width, height = im0.shape[1], im0.shape[0]save_path = os.path.join(self.save_fold, time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime()) + '.mp4')self.out = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), ori_fps,(width, height))self.out.write(im0)if percent == self.percent_length:print(count)self.send_percent.emit(0)self.send_msg.emit('finished')if hasattr(self, 'out'):self.out.release()breakexcept Exception as e:self.send_msg.emit('%s' % e)class MainWindow(QMainWindow, Ui_mainWindow):def __init__(self, parent=None):super(MainWindow, self).__init__(parent)self.setupUi(self)self.m_flag = False# style 1: window can be stretched# self.setWindowFlags(Qt.CustomizeWindowHint | Qt.WindowStaysOnTopHint)# style 2: window can not be stretchedself.setWindowFlags(Qt.Window | Qt.FramelessWindowHint| Qt.WindowSystemMenuHint | Qt.WindowMinimizeButtonHint | Qt.WindowMaximizeButtonHint)# self.setWindowOpacity(0.85)  # Transparency of windowself.minButton.clicked.connect(self.showMinimized)self.maxButton.clicked.connect(self.max_or_restore)# show Maximized windowself.maxButton.animateClick(10)self.closeButton.clicked.connect(self.close)self.qtimer = QTimer(self)self.qtimer.setSingleShot(True)self.qtimer.timeout.connect(lambda: self.statistic_label.clear())# search models automaticallyself.comboBox.clear()self.pt_list = os.listdir('./pt')self.pt_list = [file for file in self.pt_list if file.endswith('.pt')]self.pt_list.sort(key=lambda x: os.path.getsize('./pt/'+x))self.comboBox.clear()self.comboBox.addItems(self.pt_list)self.qtimer_search = QTimer(self)self.qtimer_search.timeout.connect(lambda: self.search_pt())self.qtimer_search.start(2000)# yolov5 threadself.det_thread = DetThread()self.model_type = self.comboBox.currentText()self.det_thread.weights = "./pt/%s" % self.model_typeself.det_thread.source = '0'self.det_thread.percent_length = self.progressBar.maximum()self.det_thread.send_raw.connect(lambda x: self.show_image(x, self.raw_video))self.det_thread.send_img.connect(lambda x: self.show_image(x, self.out_video))self.det_thread.send_statistic.connect(self.show_statistic)self.det_thread.send_msg.connect(lambda x: self.show_msg(x))self.det_thread.send_percent.connect(lambda x: self.progressBar.setValue(x))self.det_thread.send_fps.connect(lambda x: self.fps_label.setText(x))self.fileButton.clicked.connect(self.open_file)self.cameraButton.clicked.connect(self.chose_cam)self.rtspButton.clicked.connect(self.chose_rtsp)self.runButton.clicked.connect(self.run_or_continue)self.stopButton.clicked.connect(self.stop)self.comboBox.currentTextChanged.connect(self.change_model)self.confSpinBox.valueChanged.connect(lambda x: self.change_val(x, 'confSpinBox'))self.confSlider.valueChanged.connect(lambda x: self.change_val(x, 'confSlider'))self.iouSpinBox.valueChanged.connect(lambda x: self.change_val(x, 'iouSpinBox'))self.iouSlider.valueChanged.connect(lambda x: self.change_val(x, 'iouSlider'))self.rateSpinBox.valueChanged.connect(lambda x: self.change_val(x, 'rateSpinBox'))self.rateSlider.valueChanged.connect(lambda x: self.change_val(x, 'rateSlider'))self.checkBox.clicked.connect(self.checkrate)self.saveCheckBox.clicked.connect(self.is_save)self.load_setting()def search_pt(self):pt_list = os.listdir('./pt')pt_list = [file for file in pt_list if file.endswith('.pt')]pt_list.sort(key=lambda x: os.path.getsize('./pt/' + x))if pt_list != self.pt_list:self.pt_list = pt_listself.comboBox.clear()self.comboBox.addItems(self.pt_list)def is_save(self):if self.saveCheckBox.isChecked():self.det_thread.save_fold = './result'else:self.det_thread.save_fold = Nonedef checkrate(self):if self.checkBox.isChecked():self.det_thread.rate_check = Trueelse:self.det_thread.rate_check = Falsedef chose_rtsp(self):self.rtsp_window = Window()config_file = 'config/ip.json'if not os.path.exists(config_file):ip = "rtsp://admin:admin888@192.168.1.67:555"new_config = {"ip": ip}new_json = json.dumps(new_config, ensure_ascii=False, indent=2)with open(config_file, 'w', encoding='utf-8') as f:f.write(new_json)else:config = json.load(open(config_file, 'r', encoding='utf-8'))ip = config['ip']self.rtsp_window.rtspEdit.setText(ip)self.rtsp_window.show()self.rtsp_window.rtspButton.clicked.connect(lambda: self.load_rtsp(self.rtsp_window.rtspEdit.text()))def load_rtsp(self, ip):try:self.stop()MessageBox(self.closeButton, title='Tips', text='Loading rtsp stream', time=1000, auto=True).exec_()self.det_thread.source = ipnew_config = {"ip": ip}new_json = json.dumps(new_config, ensure_ascii=False, indent=2)with open('config/ip.json', 'w', encoding='utf-8') as f:f.write(new_json)self.statistic_msg('Loading rtsp:{}'.format(ip))self.rtsp_window.close()except Exception as e:self.statistic_msg('%s' % e)def chose_cam(self):try:self.stop()MessageBox(self.closeButton, title='Tips', text='Loading camera', time=2000, auto=True).exec_()# get the number of local cameras_, cams = Camera().get_cam_num()popMenu = QMenu()popMenu.setFixedWidth(self.cameraButton.width())popMenu.setStyleSheet('''QMenu {font-size: 16px;font-family: "Microsoft YaHei UI";font-weight: light;color:white;padding-left: 5px;padding-right: 5px;padding-top: 4px;padding-bottom: 4px;border-style: solid;border-width: 0px;border-color: rgba(255, 255, 255, 255);border-radius: 3px;background-color: rgba(200, 200, 200,50);}''')for cam in cams:exec("action_%s = QAction('%s')" % (cam, cam))exec("popMenu.addAction(action_%s)" % cam)x = self.groupBox_5.mapToGlobal(self.cameraButton.pos()).x()y = self.groupBox_5.mapToGlobal(self.cameraButton.pos()).y()y = y + self.cameraButton.frameGeometry().height()pos = QPoint(x, y)action = popMenu.exec_(pos)if action:self.det_thread.source = action.text()self.statistic_msg('Loading camera:{}'.format(action.text()))except Exception as e:self.statistic_msg('%s' % e)def load_setting(self):config_file = 'config/setting.json'if not os.path.exists(config_file):iou = 0.26conf = 0.33rate = 10check = 0savecheck = 0new_config = {"iou": iou,"conf": conf,"rate": rate,"check": check,"savecheck": savecheck}new_json = json.dumps(new_config, ensure_ascii=False, indent=2)with open(config_file, 'w', encoding='utf-8') as f:f.write(new_json)else:config = json.load(open(config_file, 'r', encoding='utf-8'))if len(config) != 5:iou = 0.26conf = 0.33rate = 10check = 0savecheck = 0else:iou = config['iou']conf = config['conf']rate = config['rate']check = config['check']savecheck = config['savecheck']self.confSpinBox.setValue(conf)self.iouSpinBox.setValue(iou)self.rateSpinBox.setValue(rate)self.checkBox.setCheckState(check)self.det_thread.rate_check = checkself.saveCheckBox.setCheckState(savecheck)self.is_save()def change_val(self, x, flag):if flag == 'confSpinBox':self.confSlider.setValue(int(x*100))elif flag == 'confSlider':self.confSpinBox.setValue(x/100)self.det_thread.conf_thres = x/100elif flag == 'iouSpinBox':self.iouSlider.setValue(int(x*100))elif flag == 'iouSlider':self.iouSpinBox.setValue(x/100)self.det_thread.iou_thres = x/100elif flag == 'rateSpinBox':self.rateSlider.setValue(x)elif flag == 'rateSlider':self.rateSpinBox.setValue(x)self.det_thread.rate = x * 10else:passdef statistic_msg(self, msg):self.statistic_label.setText(msg)# self.qtimer.start(3000)def show_msg(self, msg):self.runButton.setChecked(Qt.Unchecked)self.statistic_msg(msg)if msg == "Finished":self.saveCheckBox.setEnabled(True)def change_model(self, x):self.model_type = self.comboBox.currentText()self.det_thread.weights = "./pt/%s" % self.model_typeself.statistic_msg('Change model to %s' % x)def open_file(self):config_file = 'config/fold.json'# config = json.load(open(config_file, 'r', encoding='utf-8'))config = json.load(open(config_file, 'r', encoding='utf-8'))open_fold = config['open_fold']if not os.path.exists(open_fold):open_fold = os.getcwd()name, _ = QFileDialog.getOpenFileName(self, 'Video/image', open_fold, "Pic File(*.mp4 *.mkv *.avi *.flv ""*.jpg *.png)")if name:self.det_thread.source = nameself.statistic_msg('Loaded file:{}'.format(os.path.basename(name)))config['open_fold'] = os.path.dirname(name)config_json = json.dumps(config, ensure_ascii=False, indent=2)with open(config_file, 'w', encoding='utf-8') as f:f.write(config_json)self.stop()def max_or_restore(self):if self.maxButton.isChecked():self.showMaximized()else:self.showNormal()def run_or_continue(self):self.det_thread.jump_out = Falseif self.runButton.isChecked():self.saveCheckBox.setEnabled(False)self.det_thread.is_continue = Trueif not self.det_thread.isRunning():self.det_thread.start()source = os.path.basename(self.det_thread.source)source = 'camera' if source.isnumeric() else sourceself.statistic_msg('Detecting >> model:{},file:{}'.format(os.path.basename(self.det_thread.weights),source))else:self.det_thread.is_continue = Falseself.statistic_msg('Pause')def stop(self):self.det_thread.jump_out = Trueself.saveCheckBox.setEnabled(True)def mousePressEvent(self, event):self.m_Position = event.pos()if event.button() == Qt.LeftButton:if 0 < self.m_Position.x() < self.groupBox.pos().x() + self.groupBox.width() and \0 < self.m_Position.y() < self.groupBox.pos().y() + self.groupBox.height():self.m_flag = Truedef mouseMoveEvent(self, QMouseEvent):if Qt.LeftButton and self.m_flag:self.move(QMouseEvent.globalPos() - self.m_Position)def mouseReleaseEvent(self, QMouseEvent):self.m_flag = False@staticmethoddef show_image(img_src, label):try:ih, iw, _ = img_src.shapew = label.geometry().width()h = label.geometry().height()# keep original aspect ratioif iw/w > ih/h:scal = w / iwnw = wnh = int(scal * ih)img_src_ = cv2.resize(img_src, (nw, nh))else:scal = h / ihnw = int(scal * iw)nh = himg_src_ = cv2.resize(img_src, (nw, nh))frame = cv2.cvtColor(img_src_, cv2.COLOR_BGR2RGB)img = QImage(frame.data, frame.shape[1], frame.shape[0], frame.shape[2] * frame.shape[1],QImage.Format_RGB888)label.setPixmap(QPixmap.fromImage(img))except Exception as e:print(repr(e))def show_statistic(self, statistic_dic):try:self.resultWidget.clear()statistic_dic = sorted(statistic_dic.items(), key=lambda x: x[1], reverse=True)statistic_dic = [i for i in statistic_dic if i[1] > 0]results = [' '+str(i[0]) + ':' + str(i[1]) for i in statistic_dic]self.resultWidget.addItems(results)except Exception as e:print(repr(e))def closeEvent(self, event):self.det_thread.jump_out = Trueconfig_file = 'config/setting.json'config = dict()config['iou'] = self.confSpinBox.value()config['conf'] = self.iouSpinBox.value()config['rate'] = self.rateSpinBox.value()config['check'] = self.checkBox.checkState()config['savecheck'] = self.saveCheckBox.checkState()config_json = json.dumps(config, ensure_ascii=False, indent=2)with open(config_file, 'w', encoding='utf-8') as f:f.write(config_json)MessageBox(self.closeButton, title='Tips', text='Closing the program', time=2000, auto=True).exec_()sys.exit(0)if __name__ == "__main__":R = np.array([[9.1119371736959609e-01, -2.4815760576991752e-02, -4.1123009064654115e-01],[4.1105811256386449e-01, -1.1909647756530584e-02, 9.1153134251420498e-01],[-2.7517949080742898e-02, -9.9962109737505089e-01, -6.5127650722056341e-04]])R = R.T# 平移向量# t = np.array([[-730.2794],#               [290.2519],#               [688.4792]])t = np.array([[1.0966499328613281e+01],[-4.1683087348937988e+00],[8.7983322143554688e-01]])# 内参矩阵,转置# IntrinsicMatrix = np.array([[423.0874, 0, 0],#                             [0, 418.7552, 0],#                             [652.5402, 460.2077, 1]])IntrinsicMatrix = np.array([[1.9770188633212194e+03, 0., 1.0126938349335526e+03],[0., 1.9668641721787440e+03, 4.7095156301902404e+02],[0., 0., 1.]])IntrinsicMatrix = IntrinsicMatrix.T# 焦距f = [1.9770188633212194e+03, 1.9668641721787440e+03]# 主点principal_point = [1.0126938349335526e+03, 4.7095156301902404e+02]# 径向畸变矩阵# K = [-0.3746, 0.1854, -0.0514]K = [1.0966499328613281e+01,-4.1683087348937988e+00,8.7983322143554688e-01]# 切向畸变矩阵# P = [0.0074, -0.0012]P = [-2.4283340903321522e-03,3.1736917344022848e-02]app = QApplication(sys.argv)myWin = MainWindow()myWin.show()# myWin.showMaximized()sys.exit(app.exec_())

这篇关于yolov5 +gui界面+单目测距 实现对图片视频摄像头的测距的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144584

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核