树莓派使用WiringPi库配合时间函数实现超声波测距

2024-09-07 10:04

本文主要是介绍树莓派使用WiringPi库配合时间函数实现超声波测距,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

树莓派使用WiringPi库配合时间函数实现超声波测距

文章目录

  • 树莓派使用WiringPi库配合时间函数实现超声波测距
    • 一、HR-04超声波模块原理
      • 1.1 超声波测距原理:
      • 1.2 超声波时序图:
    • 二、树莓派与超声波模块硬件连接
    • 三、时间函数
      • 3.1 时间函数gettimeofday()原型和头文件:
    • 四、实现超声波测距
      • 4.1 使用wiringOP库和时间函数实现超声波测距:
    • 五、实现超声波测距并触发警报
      • 5.1 硬件接线:
      • 5.2 实现超声波测距(距离小于10cm时蜂鸣器发出警报):

一、HR-04超声波模块原理

1.1 超声波测距原理:

  • 让它发送波:给Trig端口至少10us的高电平

  • 开始发送波:Echo信号由低电平跳转到高电平

  • 接收返回波:Echo信号由高电平跳转回低电平

  • 计算时间 :Echo引脚维持高电平的时间!

  • 开始发送波,启动定时器,接收到返回波,停止计时器

  • 计算距离 :测试距离=(高电平时间*声速(340m/s))/2

1.2 超声波时序图:

在这里插入图片描述

二、树莓派与超声波模块硬件连接

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

三、时间函数

3.1 时间函数gettimeofday()原型和头文件:

#include <sys/time.h>int gettimeofday(struct timeval *tv, struct timezone *tz);int 					函数返回值,如果成功,gettimeofday 返回 0。如果失败,它返回 -1 并设置 errno 以指示错误。struct timeval *tv		这是一个指向 timeval 结构体的指针,该结构体用于存储当前时间。timeval 的定义如下:struct timeval {  time_t      tv_sec;   /* 秒 */  suseconds_t tv_usec;  /* 微秒 */  
};time_t      tv_sec		是一个整数,表示自 Unix 纪元(19701100:00:00 UTC)以来的秒数。
suseconds_t tv_usec		是一个整数,表示微秒数(0999,999)。struct timezone *tz		这是一个指向 timezone 结构体的指针,用于存储时区信息。但在现代系统中,这个参数通常被忽略,因为大多					      数系统都使用 UTC 时间,并且不再使用本地时区偏移。这个参数我们通常设置为NULL/*函数说明:
gettimeofday 是一个 Unix 和 Linux 系统调用,用于获取当前的时间(包括秒和微秒)和时区信息(尽管时区信息在大多数现代系统中可能不太常用)
*/

四、实现超声波测距

4.1 使用wiringOP库和时间函数实现超声波测距:

#include <stdio.h>
#include <wiringPi.h>
#include <sys/time.h>
#include <unistd.h>#define TRIG 2                                      //定义超声波的TRIG引脚为2
#define ECHO 3                                      //定义超声波的ECHO引脚为3void SR04_GPIO_Init()                               //初始化GPIO
{pinMode(TRIG, OUTPUT);                          //设置TRIG引脚为输出模式pinMode(ECHO, INPUT);                           //设置ECHO引脚为输入模式
}void sendTriggerPulse()                             //发送触发脉冲
{digitalWrite(TRIG, LOW);                        //拉低TRIG引脚usleep(2);                                     //延时2微秒  digitalWrite(TRIG, HIGH);                       //拉高TRIG引脚usleep(10);                                    //延时10微秒digitalWrite(TRIG, LOW);                        //拉低TRIG引脚
}double getDistance()                                //获取超声波距离
{double distance;                                //定义距离变量struct timeval Start;                           //定义开始时间变量struct timeval Stop;                            //定义结束时间变量sendTriggerPulse();                             //发送触发脉冲while(!digitalRead(ECHO));                      //等待接收到回波gettimeofday(&Start, NULL);                     //获取开始时间while(digitalRead(ECHO));                       //等待发送结束gettimeofday(&Stop, NULL);                      //获取结束时间//计算时间差(单位:微秒)long diffTime = 1000000 * (Stop.tv_sec - Start.tv_sec) + (Stop.tv_usec - Start.tv_usec); distance = (double)diffTime/1000000 * 34000 / 2;                    //计算距离(单位:厘米)return distance;                                //返回距离值
}int main()
{double dis;                                     //定义距离变量if(wiringPiSetup() == -1){                      //初始化wiringPi库printf("初始化wiringPi库失败!\n");return -1;}SR04_GPIO_Init();                               //初始化GPIOwhile(1){dis = getDistance();                        //获取超声波距离printf("当前超声波距离为:%.2f cm\n",dis);usleep(500000);                             //没500ms采集一次}return 0;
}

在这里插入图片描述

五、实现超声波测距并触发警报

5.1 硬件接线:

在这里插入图片描述

在这里插入图片描述

5.2 实现超声波测距(距离小于10cm时蜂鸣器发出警报):

#include <stdio.h>
#include <wiringPi.h>
#include <sys/time.h>
#include <unistd.h>#define TRIG 2                                      //定义超声波的TRIG引脚为2
#define ECHO 3                                      //定义超声波的ECHO引脚为3
#define BEEP 7                                      //定义蜂鸣器的引脚为7void SR04_BEEP_SGPIO_Init()                         //初始化GPIO
{pinMode(TRIG, OUTPUT);                          //设置TRIG引脚为输出模式pinMode(ECHO, INPUT);                           //设置ECHO引脚为输入模式pinMode(BEEP, OUTPUT);                          //设置BEEP引脚为输出模式
}void sendTriggerPulse()                             //发送触发脉冲
{digitalWrite(TRIG, LOW);                        //拉低TRIG引脚usleep(2);                                     //延时2微秒  digitalWrite(TRIG, HIGH);                       //拉高TRIG引脚usleep(10);                                    //延时10微秒digitalWrite(TRIG, LOW);                        //拉低TRIG引脚
}double getDistance()                                //获取超声波距离
{double distance;                                //定义距离变量struct timeval Start;                           //定义开始时间变量struct timeval Stop;                            //定义结束时间变量sendTriggerPulse();                             //发送触发脉冲while(!digitalRead(ECHO));                      //等待接收到回波gettimeofday(&Start, NULL);                     //获取开始时间while(digitalRead(ECHO));                       //等待发送结束gettimeofday(&Stop, NULL);                      //获取结束时间//计算时间差(单位:微秒)long diffTime = 1000000 * (Stop.tv_sec - Start.tv_sec) + (Stop.tv_usec - Start.tv_usec);    distance = (double)diffTime/1000000 * 34000 / 2;                    //计算距离(单位:厘米)return distance;                                //返回距离值
}int main()
{double dis;                                     //定义距离变量if(wiringPiSetup() == -1){                      //初始化wiringPi库printf("初始化wiringPi库失败!\n");return -1;}SR04_BEEP_SGPIO_Init();                         //初始化GPIOwhile(1){dis = getDistance();                        //获取超声波距离printf("当前超声波距离为:%.2f cm\n",dis);usleep(500000);                             //没500ms采集一次if(dis < 10){                               //如果距离小于10cm,则蜂鸣器发出警报printf("警报!超声波距离为:%.2f cm\n",dis);digitalWrite(BEEP, LOW); delay(200);digitalWrite(BEEP, HIGH);}else{digitalWrite(BEEP, HIGH);               //超声波距离大于10cm,则关闭蜂鸣器}}return 0;
}

在这里插入图片描述

这篇关于树莓派使用WiringPi库配合时间函数实现超声波测距的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144750

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行