树莓派使用WiringPi库配合时间函数实现超声波测距

2024-09-07 10:04

本文主要是介绍树莓派使用WiringPi库配合时间函数实现超声波测距,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

树莓派使用WiringPi库配合时间函数实现超声波测距

文章目录

  • 树莓派使用WiringPi库配合时间函数实现超声波测距
    • 一、HR-04超声波模块原理
      • 1.1 超声波测距原理:
      • 1.2 超声波时序图:
    • 二、树莓派与超声波模块硬件连接
    • 三、时间函数
      • 3.1 时间函数gettimeofday()原型和头文件:
    • 四、实现超声波测距
      • 4.1 使用wiringOP库和时间函数实现超声波测距:
    • 五、实现超声波测距并触发警报
      • 5.1 硬件接线:
      • 5.2 实现超声波测距(距离小于10cm时蜂鸣器发出警报):

一、HR-04超声波模块原理

1.1 超声波测距原理:

  • 让它发送波:给Trig端口至少10us的高电平

  • 开始发送波:Echo信号由低电平跳转到高电平

  • 接收返回波:Echo信号由高电平跳转回低电平

  • 计算时间 :Echo引脚维持高电平的时间!

  • 开始发送波,启动定时器,接收到返回波,停止计时器

  • 计算距离 :测试距离=(高电平时间*声速(340m/s))/2

1.2 超声波时序图:

在这里插入图片描述

二、树莓派与超声波模块硬件连接

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

三、时间函数

3.1 时间函数gettimeofday()原型和头文件:

#include <sys/time.h>int gettimeofday(struct timeval *tv, struct timezone *tz);int 					函数返回值,如果成功,gettimeofday 返回 0。如果失败,它返回 -1 并设置 errno 以指示错误。struct timeval *tv		这是一个指向 timeval 结构体的指针,该结构体用于存储当前时间。timeval 的定义如下:struct timeval {  time_t      tv_sec;   /* 秒 */  suseconds_t tv_usec;  /* 微秒 */  
};time_t      tv_sec		是一个整数,表示自 Unix 纪元(19701100:00:00 UTC)以来的秒数。
suseconds_t tv_usec		是一个整数,表示微秒数(0999,999)。struct timezone *tz		这是一个指向 timezone 结构体的指针,用于存储时区信息。但在现代系统中,这个参数通常被忽略,因为大多					      数系统都使用 UTC 时间,并且不再使用本地时区偏移。这个参数我们通常设置为NULL/*函数说明:
gettimeofday 是一个 Unix 和 Linux 系统调用,用于获取当前的时间(包括秒和微秒)和时区信息(尽管时区信息在大多数现代系统中可能不太常用)
*/

四、实现超声波测距

4.1 使用wiringOP库和时间函数实现超声波测距:

#include <stdio.h>
#include <wiringPi.h>
#include <sys/time.h>
#include <unistd.h>#define TRIG 2                                      //定义超声波的TRIG引脚为2
#define ECHO 3                                      //定义超声波的ECHO引脚为3void SR04_GPIO_Init()                               //初始化GPIO
{pinMode(TRIG, OUTPUT);                          //设置TRIG引脚为输出模式pinMode(ECHO, INPUT);                           //设置ECHO引脚为输入模式
}void sendTriggerPulse()                             //发送触发脉冲
{digitalWrite(TRIG, LOW);                        //拉低TRIG引脚usleep(2);                                     //延时2微秒  digitalWrite(TRIG, HIGH);                       //拉高TRIG引脚usleep(10);                                    //延时10微秒digitalWrite(TRIG, LOW);                        //拉低TRIG引脚
}double getDistance()                                //获取超声波距离
{double distance;                                //定义距离变量struct timeval Start;                           //定义开始时间变量struct timeval Stop;                            //定义结束时间变量sendTriggerPulse();                             //发送触发脉冲while(!digitalRead(ECHO));                      //等待接收到回波gettimeofday(&Start, NULL);                     //获取开始时间while(digitalRead(ECHO));                       //等待发送结束gettimeofday(&Stop, NULL);                      //获取结束时间//计算时间差(单位:微秒)long diffTime = 1000000 * (Stop.tv_sec - Start.tv_sec) + (Stop.tv_usec - Start.tv_usec); distance = (double)diffTime/1000000 * 34000 / 2;                    //计算距离(单位:厘米)return distance;                                //返回距离值
}int main()
{double dis;                                     //定义距离变量if(wiringPiSetup() == -1){                      //初始化wiringPi库printf("初始化wiringPi库失败!\n");return -1;}SR04_GPIO_Init();                               //初始化GPIOwhile(1){dis = getDistance();                        //获取超声波距离printf("当前超声波距离为:%.2f cm\n",dis);usleep(500000);                             //没500ms采集一次}return 0;
}

在这里插入图片描述

五、实现超声波测距并触发警报

5.1 硬件接线:

在这里插入图片描述

在这里插入图片描述

5.2 实现超声波测距(距离小于10cm时蜂鸣器发出警报):

#include <stdio.h>
#include <wiringPi.h>
#include <sys/time.h>
#include <unistd.h>#define TRIG 2                                      //定义超声波的TRIG引脚为2
#define ECHO 3                                      //定义超声波的ECHO引脚为3
#define BEEP 7                                      //定义蜂鸣器的引脚为7void SR04_BEEP_SGPIO_Init()                         //初始化GPIO
{pinMode(TRIG, OUTPUT);                          //设置TRIG引脚为输出模式pinMode(ECHO, INPUT);                           //设置ECHO引脚为输入模式pinMode(BEEP, OUTPUT);                          //设置BEEP引脚为输出模式
}void sendTriggerPulse()                             //发送触发脉冲
{digitalWrite(TRIG, LOW);                        //拉低TRIG引脚usleep(2);                                     //延时2微秒  digitalWrite(TRIG, HIGH);                       //拉高TRIG引脚usleep(10);                                    //延时10微秒digitalWrite(TRIG, LOW);                        //拉低TRIG引脚
}double getDistance()                                //获取超声波距离
{double distance;                                //定义距离变量struct timeval Start;                           //定义开始时间变量struct timeval Stop;                            //定义结束时间变量sendTriggerPulse();                             //发送触发脉冲while(!digitalRead(ECHO));                      //等待接收到回波gettimeofday(&Start, NULL);                     //获取开始时间while(digitalRead(ECHO));                       //等待发送结束gettimeofday(&Stop, NULL);                      //获取结束时间//计算时间差(单位:微秒)long diffTime = 1000000 * (Stop.tv_sec - Start.tv_sec) + (Stop.tv_usec - Start.tv_usec);    distance = (double)diffTime/1000000 * 34000 / 2;                    //计算距离(单位:厘米)return distance;                                //返回距离值
}int main()
{double dis;                                     //定义距离变量if(wiringPiSetup() == -1){                      //初始化wiringPi库printf("初始化wiringPi库失败!\n");return -1;}SR04_BEEP_SGPIO_Init();                         //初始化GPIOwhile(1){dis = getDistance();                        //获取超声波距离printf("当前超声波距离为:%.2f cm\n",dis);usleep(500000);                             //没500ms采集一次if(dis < 10){                               //如果距离小于10cm,则蜂鸣器发出警报printf("警报!超声波距离为:%.2f cm\n",dis);digitalWrite(BEEP, LOW); delay(200);digitalWrite(BEEP, HIGH);}else{digitalWrite(BEEP, HIGH);               //超声波距离大于10cm,则关闭蜂鸣器}}return 0;
}

在这里插入图片描述

这篇关于树莓派使用WiringPi库配合时间函数实现超声波测距的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144750

相关文章

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne