永磁同步电机谐波抑制算法(4)——多同步旋转坐标系谐波电流抑制存在的问题以及改进办法

本文主要是介绍永磁同步电机谐波抑制算法(4)——多同步旋转坐标系谐波电流抑制存在的问题以及改进办法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.问题的引出

在之前的内容中以及讲了多同步旋转坐标系的五七次谐波电流的抑制。

永磁同步电机谐波抑制算法(1)——基于多同步旋转坐标系的五七次谐波电流抑制 - 知乎这段时间发现电机里面会存在五次谐波,然后学了学谐波抑制的方法。一般比较常用的是多同步旋转坐标系和PIR调节器。今天先讲一下多同步旋转坐标系。 Pony:永磁同步电机-谐波抑制这篇知乎下面有很多人在问问题,所…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/673773182

虽然这个方法最终是能够实现了五七次谐波电流的完全抑制(最终的效果是非常好的),但是这个过程还存在一定问题的。

为五七次谐波电流的抑制,我们要建立五次、七次同步旋转坐标系,因为在五次、七次同步旋转坐标系下,五七次谐波电流分别都为直流。这样一来,我们就可以直接用PI调节器进行谐波电流的控制了。

但是!因为电流里面包含基波、五次、七次电流分量,所以在同步旋转坐标系下,电流不可能都是直流的,所以我们要进行低通滤波,把五七次谐波的直流分量提取出来。

下图为我仿真中,在五次同步旋转坐标系下,对id5的FFT分析的结果。在五次同步旋转坐标系下,直流分量就是五次谐波、六次分量就是基波电流、十二次分量就是七次谐波。(需要解释的话就看下面这篇知乎)

永磁同步电机中3的倍数次谐波为什么不存在? - 知乎写这个回答,还想顺便回答一下其他几个相关的问题。1.永磁同步电机中3的倍数次谐波为什么不存在?2.在静止…icon-default.png?t=N7T8https://www.zhihu.com/question/362376425/answer/3372378100

可以看到,尽管我加了低通滤波器,但是提取得到的id5中的交流量幅值还是太大了,直流分量反而太小了,这当然就会影响谐波的抑制效果。

下面这是一篇论文中给出的iq5的波形,同样地,即使有低通滤波,iq5还是会有交流分量。

参考文献:

这篇文章为了提取五次同步旋转下的直流分量,给原来的低通滤波器加上了一个反馈闭环PI控制,其结构如下图所示:

文章最终的效果是挺好的,但是我个人感觉不是很方便,而且需要对PI以及低通滤波器进行调参。

那现在我的想法是,有没有什么比较简单的方式能够比较干净的提取谐波电流呢?

2.简单提取谐波电流的精确办法

参考文献:

 

文中的办法:

文章先通过d-q电流参考值,计算出abc三相电流的基波分量。

然后通过将实际的三相电流与三相电流的基波分量相减,就可以得到谐波电流的数值了。之后再经过低通滤波器,就可以得到比较干净的直流。

根据文章公式,搭建好相应的模块

上图代表期望的三相电流,中间代表实际的三相电流,下图代表提取得到相电流谐波

加入上述谐波提取模块之后提取得到id5

 从下图中可以看到,通过上述办法,我们有效滤除了基波电流在五次同步旋转坐标系下的绝大部分。

3.仿真对比

仿真参数:

Tpwm = 1e-4;%开关周期

Tspeed = 5e-4;%转速采样周期,在实际DSP系统中,Tspeed会小于Tpwm

Pn = 4;%电机极对数

Ls = 8.5e-3;%定子电感,采用隐极的,Ld=Lq=Ls

Rs = 3;%定子电阻

flux = 0.1688;%永磁体磁链

Vdc = 311;%直流母线电压

iqmax = 30;%额定电流

fc = 125;

%这是5-7同步旋转坐标系下低通滤波器的带宽以及基波同步旋转坐标系下PI调节器的带宽,单位为Hz

%5-7同步旋转坐标系下PI调节器的带宽设置为0.8fc

Tdead = 7.5e-6;%死区时间

time_trans = 0.25;

%谐波抑制开始的时间

 

谐波抑制前的相电流FFT分析

 

基于改进的谐波提取方法的多同步旋转坐标系谐波抑制策略在0.28s时的FFT

 

基于传统的谐波提取方法的多同步旋转坐标系谐波抑制策略的在0.28s时的FFT

这里对比看来,好像二者并没有太大区别如果再回去看看我之前的知乎,发现这个多同步旋转坐标系谐波抑制策略的PI带宽必须很小,不能太大,越大就越容易失去稳定。上文的PI带宽才设置为125Hz,这属于非常低的带宽了。

永磁同步电机谐波抑制算法(1)——基于多同步旋转坐标系的五七次谐波电流抑制 - 知乎这段时间发现电机里面会存在五次谐波,然后学了学谐波抑制的方法。一般比较常用的是多同步旋转坐标系和PIR调节器。今天先讲一下多同步旋转坐标系。 Pony:永磁同步电机-谐波抑制这篇知乎下面有很多人在问问题,所…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/673773182

下面我把PI带宽调节到250Hz看看效果:

采用改进策略后的三相电流、转矩、转速波形
采用传统策略的三相电流、转矩、转速波形

 

 

可以看到,采用改进策略,在0.25s开始谐波抑制时,转矩脉动明显减小,说明谐波抑制开始起作用了;而传统的策略在0.25s开始振荡,说明系统有点不太稳定了。

下面我把PI带宽调节到500Hz看看效果:

采用改进策略后的三相电流、转矩、转速波形
采用传统策略的三相电流、转矩、转速波形

可以看到,采用改进策略的效果还是很好,系统也没有发生不稳定的问题;而传统策略此时转矩立即下跌,导致转速没办法稳定在1200r/min,速度不断下降。

4.仿真分析

为什么多同步旋转坐标系下的PI带宽越大越容易失去稳定呢?

1)低通滤波器的存在会增加系统的延时、减小系统的稳定裕度。

参考文献:

 

LPFs are usually needed in MSRF-based harmonic control [18], [23], [24]. Note that the delay resulting from LPFs can degrade the dynamic performance as well as the stability margin of the control system.

2)多同步旋转坐标系中,需要多个PI,PI调节器参数设计不当就很容易失去稳定。

3)在传统的方案中,基波同步坐标系下的PI调节器输出实际上会包含一部分五七次谐波分量;同理,在五七同步坐标系下的PI调节器输出实际上会包含一部分基波分量。这就会造成几个PI调节器输出直接的相互冲突。

参考文献:

 

 

Because the actual motor current contains harmonics, the output voltage of d-axis and q-axis current controllers will contain a certain amount of harmonics, which is bound to have a further impact on the current harmonics.


怎么验证这个几个PI是相互冲突的呢?

我们可以看到加入五七次同步旋转坐标系后,原来的基波旋转坐标系下的PI的输出是否会变化。(我是在0.25s加入五七次同步旋转坐标系的)

 

带宽125Hz,基波同步旋转坐标系下d-q电流PI调节器输出变化
带宽250Hz,基波同步旋转坐标系下d-q电流PI调节器输出变化

可以看到,在带宽升高之后,基波同步旋转坐标系下d-q电流PI调节器输出有了明显变化。特别是q轴电压,输出变化特别大


为什么这个新的谐波提取策略可以提高系统的带宽呢?

因为这个策略相当于滤除了五七同步坐标系下的PI调节器输出包含的基波分量,这使得基波电流只受基波同步旋转坐标系下的PI调节器影响,而不是同时受三个同步旋转坐标系下的PI调节器影响,避免了多个PI调节器的输出冲突。因而也就有了更好的控制性能。

从下图可以看到,五七次同步旋转坐标系后,基波同步旋转坐标系下d-q电流PI调节器输出幅值基本没变化,说明这个方法确实避免了多个PI调节器的输出冲突。

带宽125Hz,基波同步旋转坐标系下d-q电流PI调节器输出变化
带宽250Hz,基波同步旋转坐标系下d-q电流PI调节器输出变化

 

 

 

 

 

 

 

 

 

 

 

这篇关于永磁同步电机谐波抑制算法(4)——多同步旋转坐标系谐波电流抑制存在的问题以及改进办法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/882847

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监