深度学习理论基础(六)Transformer多头注意力机制

2024-04-07 05:44

本文主要是介绍深度学习理论基础(六)Transformer多头注意力机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、自定义多头注意力机制
    • 1. 缩放点积注意力(Scaled Dot-Product Attention)
      • ● 计算公式
      • ● 原理
    • 2. 多头注意力机制框图
      • ● 具体代码
  • 二、pytorch中的子注意力机制模块

  
  深度学习中的注意力机制(Attention Mechanism)是一种模仿人类视觉和认知系统的方法,它允许神经网络在处理输入数据时集中注意力于相关的部分。通过引入注意力机制,神经网络能够自动地学习并选择性地关注输入中的重要信息,提高模型的性能和泛化能力。
  下图 展示了人类在看到一幅图像时如何高效分配有限注意力资源的,其中红色区域表明视觉系统更加关注的目标,从图中可以看出:人们会把注意力更多的投入到人的脸部。文本的标题以及文章的首句等位置。而注意力机制就是通过机器来找到这些重要的部分。
在这里插入图片描述

一、自定义多头注意力机制

1. 缩放点积注意力(Scaled Dot-Product Attention)

  缩放点积注意力(Scaled Dot-Product Attention)是注意力机制的一种形式,通常在自注意力(self-attention)机制或多头注意力机制中使用,用于模型在处理序列数据时关注输入序列中不同位置的信息。这种注意力机制常用于Transformer模型及其变体中,被广泛用于各种自然语言处理任务,如机器翻译、文本生成和问答系统等。
在这里插入图片描述

● 计算公式

在这里插入图片描述

● 原理

假设输入:给定一个查询向量(query)、一组键向量(keys)和一组值向量(values)。

(1)Dot-Product 计算相似度:通过计算查询向量query与键向量keys之间的点积,得到每个查询与所有键的相似度分数。然后将这些分数进行缩放(scale)–除以根号下d_k,以防止点积的值过大,从而导致梯度消失或梯度爆炸。
(2)Mask 可选择性 目的是将 padding的部分 填充负无穷,这样算softmax的时候这里就attention为0,从而避免padding带来的影响.
(3)Softmax归一化:对相似度分数进行softmax归一化,得到每个键的权重,这些权重表示了对应值向量的重要程度。
加权求和:使用这些权重对值向量进行加权求和,得到最终的注意力输出。
在这里插入图片描述

2. 多头注意力机制框图

  多头注意力机制是在 Scaled Dot-Product Attention 的基础上,分成多个头,也就是有多个Q、K、V并行进行计算attention,可能侧重与不同的方面的相似度和权重。
在这里插入图片描述

● 具体代码

import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as Fclass MultiHeadAttention(nn.Module):#embedding_dim:输入向量的维度,num_heads:注意力机制头数def __init__(self, embedding_dim, num_heads):super(MultiHeadAttention, self).__init__()self.num_heads = num_heads       #总头数self.embedding_dim = embedding_dim   #输入向量的维度self.d_k= self.embedding_dim// self.num_heads  #每个头 分配的输入向量的维度数self.softmax=nn.Softmax(dim=-1)self.W_query = nn.Linear(in_features=embedding_dim, out_features=embedding_dim, bias=False)self.W_key = nn.Linear(in_features=embedding_dim, out_features=embedding_dim, bias=False)self.W_value = nn.Linear(in_features=embedding_dim, out_features=embedding_dim, bias=False)self.fc_out = nn.Linear(embedding_dim, embedding_dim)#输入张量 x 中的特征维度分成 self.num_heads 个头,并且每个头的维度为 self.d_k。def split_head(self, x, batch_size):x = x.reshape(batch_size, -1, self.num_heads, self.d_k)return x.permute(0,2,1,3)   #x  (N_size, self.num_heads, -1, self.d_k)def forward(self, x):batch_size=x.size(0)  #获取输入张量 x 的批量(batch size)大小q= self.W_query(x)  k= self.W_key(x)  v= self.W_value(x)#使用 split_head 函数对 query、key、value 进行头部切分,将其分割为多个注意力头。q= self.split_head(q, batch_size)k= self.split_head(k, batch_size)v= self.split_head(v, batch_size)##attention_scorce = q*k的转置/根号d_kattention_scorce=torch.matmul(q, k.transpose(-2,-1))/torch.sqrt(torch.tensor(self.d_k, dtype=torch.float32))attention_weight= self.softmax(attention_scorce)## output = attention_weight * Voutput = torch.matmul(attention_weight, v)  # [h, N, T_q, num_units/h]output  = out.permute(0,2,1,3).contiguous() # [N, T_q, num_units]output  = out.reshape(batch_size,-1, self.embedding_dim)output  = self.fc_out(output)return output

  

二、pytorch中的子注意力机制模块

  nn.MultiheadAttention是PyTorch中用于实现多头注意力机制的模块。它允许你在输入序列之间计算多个注意力头,并且每个头都学习到了不同的注意力权重。
  创建了一些随机的输入数据,包括查询(query)、键(key)、值(value)。接着,我们使用multihead_attention模块来计算多头注意力,得到输出和注意力权重。
  请注意,你可以调整num_heads参数来控制多头注意力的头数,这将会影响到模型的复杂度和表达能力。

import torch
import torch.nn as nn# 假设我们有一些输入数据
# 输入数据形状:(序列长度, 批量大小, 输入特征维度)
input_seq_length = 10
batch_size = 3
input_features = 32# 假设我们的输入序列是随机生成的
input_data = torch.randn(input_seq_length, batch_size, input_features)# 定义多头注意力模块
# 参数说明:
#   - embed_dim: 输入特征维度
#   - num_heads: 多头注意力的头数
#   - dropout: 可选,dropout概率,默认为0.0
#   - bias: 可选,是否在注意力计算中使用偏置,默认为True
#   - add_bias_kv: 可选,是否添加bias到key和value,默认为False
#   - add_zero_attn: 可选,是否在注意力分数中添加0,默认为False
multihead_attention = nn.MultiheadAttention(input_features, num_heads=4)# 假设我们有一个query,形状为 (查询序列长度, 批量大小, 输入特征维度)
query = torch.randn(input_seq_length, batch_size, input_features)# 假设我们有一个key和value,形状相同为 (键值序列长度, 批量大小, 输入特征维度)
key = torch.randn(input_seq_length, batch_size, input_features)
value = torch.randn(input_seq_length, batch_size, input_features)# 计算多头注意力
# 返回值说明:
#   - output: 注意力计算的输出张量,形状为 (序列长度, 批量大小, 输入特征维度)
#   - attention_weights: 注意力权重,形状为 (批量大小, 输出序列长度, 输入序列长度)
output, attention_weights = multihead_attention(query, key, value)# 输出结果
print("Output shape:", output.shape)
print("Attention weights shape:", attention_weights.shape)

这篇关于深度学习理论基础(六)Transformer多头注意力机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/881771

相关文章

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Redis的持久化之RDB和AOF机制详解

《Redis的持久化之RDB和AOF机制详解》:本文主要介绍Redis的持久化之RDB和AOF机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述RDB(Redis Database)核心原理触发方式手动触发自动触发AOF(Append-Only File)核