Ubuntu20.04配置Kinect 2.0驱动安装和ROS环境下配置以及录制bag包和制作ORB-SLAM数据集

本文主要是介绍Ubuntu20.04配置Kinect 2.0驱动安装和ROS环境下配置以及录制bag包和制作ORB-SLAM数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 安装libfreenect2

1.1 下载官方文件

git clone https://github.com/OpenKinect/libfreenect2.git
cd libfreenect2

1.2 安装build工具

sudo apt-get install build-essential cmake pkg-config

1.3 安装libusb

sudo apt-get install libusb-1.0-0-dev

1.4 安装urboJPEG

sudo apt-get install libturbojpeg0-dev

1.5 安装OpenGL

sudo apt-get install libglfw3-dev

1.6 安装OpenCL

sudo apt-get install beignet-dev

1.7 安装OpenNI

sudo apt-get install libopenni2-dev

1.8 进入libfreenect2 文件夹,编译安装

cd libfreenect2
mkdir build && cd build
cmake .. -DENABLE_CXX11=ON -DCMAKE_INSTALL_PREFIX=$HOME/freenect2 
make
make install

注:在对libfreenect2进行make时报错:

fatal error: helper_math.h: No such file or directory

错误原因:
11.6版本之前的CUDA安装时会附带安装CUDA Samples,helper_math.h文件在/xxxx/NVIDIA_CUDA-10.1_Samples/common/inc/helper_math.h位置;11.6版本之后不再附带Samples,从而找不到该文件。

解决方法:

手动下载Samples
1.1. 从github下载Samples库,选择与那cuda同版本的sample库
https://github.com/NVIDIA/cuda-samples
在这里插入图片描述

1.2. 在cmake之前添加相应路径到CPATH

cd <sample_dir>
make

1.3 将help_math.h复制到那报错的路径下

cp /home/kunyuwan/cuda-samples/Common/helper_math.h [Where the error occurs]

1.9 设定udev rules

sudo cp /home/kunyuwan/libfreenect2/platform/linux/udev/90-kinect2.rules /etc/udev/rules.d/

1.10 测试

./bin/Protonect

不出意外,看到以下界面
在这里插入图片描述

2. 配置ROS环境

2.1 下载iai_kinect2包并安装

cd ~/catkin_ws/src/
git clone https://github.com/code-iai/iai_kinect2.git
cd iai_kinect2
rosdep install -r --from-paths .
cd ~/catkin_ws
catkin_make -DCMAKE_BUILD_TYPE="Release"

2.2 相机上电,测试

打开一个新的终端测试话题订阅

cd ~/catkin_ws
source devel/setup.bash
roslaunch kinect2_bridge kinect2_bridge.launch

打开一个新的终端查看实时画面。

rqt

输入rostopic list可以查看订阅的对应话题
此时再打开一个新的终端,运行以下命令:

cd ~/catkin_ws
source devel/setup.bash
rosrun kinect2_viewer kinect2_viewer kinect2 sd cloud

显示点云相机窗口,则代表启动成功!!!

3 录制bag包和制作ORB-SLAM2数据集

3.1 启动roscore,并启动相机

打开两个终端,分别执行以下命令

roscore
cd ~/catkin_ws
source devel/setup.bash
roslaunch kinect2_bridge kinect2_bridge.launch

3.2 录制

在打开一个终端

rosbag record  -o xxx.bag /kinect2/qhd/image_color_rect /kinect2/qhd/image_depth_rect

3.3 提取录制的rosbag包内的rgb和depth

注意修改路径和订阅的话题!!!

# coding:utf-8
#!/usr/bin/python# Extract images from a bag file.#PKG = 'beginner_tutorials'
import roslib;   #roslib.load_manifest(PKG)
import rosbag
import rospy
import cv2
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
from cv_bridge import CvBridgeError# Reading bag filename from command line or roslaunch parameter.
#import os
#import sysrgb_path = '/home/kunyuwan/test_kinectv2_3/rgb/'    # 已经建立好的存储rgb彩色图文件的目录(最好改成绝对路径)
depth_path= '/home/kunyuwan/test_kinectv2_3/depth/' # 已经建立好的存储深度图文件的目录(最好改成绝对路径)class ImageCreator():def __init__(self):self.bridge = CvBridge()with rosbag.Bag('/home/kunyuwan/test_kinectv2_3/4_2024-04-03-21-40-12.bag', 'r') as bag:  #要读取的bag文件(最好改成绝对路径);for topic,msg,t in bag.read_messages(): if topic == "/kinect2/qhd/image_color_rect": #图像的topic 注意不要错了;try:cv_image = self.bridge.imgmsg_to_cv2(msg,"bgr8")except CvBridgeError as e:print(e)timestr = "%.6f" %  msg.header.stamp.to_sec()#%.6f表示小数点后带有6位,可根据精确度需要修改;image_name = timestr+ ".png" #图像命名:时间戳.pngcv2.imwrite(rgb_path + image_name, cv_image)  #保存;elif topic == "/kinect2/qhd/image_depth_rect": #图像的topic;try:cv_image = self.bridge.imgmsg_to_cv2(msg,"16UC1")except CvBridgeError as e:print(e)timestr = "%.6f" %  msg.header.stamp.to_sec()#%.6f表示小数点后带有6位,可根据精确度需要修改;image_name = timestr+ ".png" #图像命名:时间戳.pngcv2.imwrite(depth_path + image_name, cv_image)  #保存;if __name__ == '__main__':#rospy.init_node(PKG)try:image_creator = ImageCreator()except rospy.ROSInterruptException:pass

3.4. 生成rgb.txt和depth.txt

#include <iostream>
#include <fmt/os.h>
#include <fmt/core.h>
#include <fmt/format.h>
#include <string>
#include <vector>
#include <algorithm>
extern "C"
{
#include <sys/types.h>
#include <sys/dir.h>
#include <dirent.h>
}
using namespace std;void getNamesToText(const char *filepath,const char *filetype)
{DIR *streamp = nullptr;dirent *dep = nullptr;string filename(filepath);auto out = fmt::output_file("./"+string(filetype));vector<string> names;streamp = opendir(filepath);errno = 0;while ((dep = readdir(streamp)) != NULL){if ((dep->d_name == ".") || (dep->d_name == "..")){continue;}names.push_back(dep->d_name);}if (errno != 0){fmt::print("error");}closedir(streamp);for (vector<string>::iterator ite = names.begin(); ite != names.end();){if ((*ite == ".") || (*ite == "..")){ite = names.erase(ite); }else{++ite;}}sort(names.begin(), names.end());for (auto &item : names){auto pos = item.find_last_of('.');string filenum;for (int i = 0; i < pos; i++){filenum += item[i];}if(strcmp(filetype,"rgb.txt")==0){out.print("{} rgb/{}\n",filenum,item);}else if(strcmp(filetype,"depth.txt")==0){out.print("{} depth/{}\n",filenum,item);}}fmt::print("{} finished\n",filetype);
}int main(int argc, char *argv[])
{if(argc<3){fmt::print("Usage: [executable] [rgb/depth path] [type]");return 0;}const char *filepath =argv[1];const char *filetype =argv[2];getNamesToText(filepath,filetype);return 0;
}

注意安装fmt

git clone  https://github.com/fmtlib/fmt.git
cd fmt
mkdir build
cd build
cmake ..
make
sudo make install

运行命令

g++ 文件名.cpp -lfmt
./a.out rgb rgb.txt # 文件夹路径和生成文件路径
./a.out depth depth.txt # 文件夹路径和生成文件路径

3.5 associate.py将rgb.txt和depth.txt进行匹配

#!/usr/bin/python
# Software License Agreement (BSD License)
#
# Copyright (c) 2013, Juergen Sturm, TUM
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
#  * Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#  * Redistributions in binary form must reproduce the above
#    copyright notice, this list of conditions and the following
#    disclaimer in the documentation and/or other materials provided
#    with the distribution.
#  * Neither the name of TUM nor the names of its
#    contributors may be used to endorse or promote products derived
#    from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# Requirements: 
# sudo apt-get install python-argparse"""
The Kinect provides the color and depth images in an un-synchronized way. This means that the set of time stamps from the color images do not intersect with those of the depth images. Therefore, we need some way of associating color images to depth images.For this purpose, you can use the ''associate.py'' script. It reads the time stamps from the rgb.txt file and the depth.txt file, and joins them by finding the best matches.
"""import argparse
import sys
import os
import numpydef read_file_list(filename):"""Reads a trajectory from a text file. File format:The file format is "stamp d1 d2 d3 ...", where stamp denotes the time stamp (to be matched)and "d1 d2 d3.." is arbitary data (e.g., a 3D position and 3D orientation) associated to this timestamp. Input:filename -- File nameOutput:dict -- dictionary of (stamp,data) tuples"""file = open(filename)data = file.read()lines = data.replace(","," ").replace("\t"," ").split("\n") list = [[v.strip() for v in line.split(" ") if v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"]list = [(float(l[0]),l[1:]) for l in list if len(l)>1]return dict(list)def associate(first_list, second_list,offset,max_difference):"""Associate two dictionaries of (stamp,data). As the time stamps never match exactly, we aim to find the closest match for every input tuple.Input:first_list -- first dictionary of (stamp,data) tuplessecond_list -- second dictionary of (stamp,data) tuplesoffset -- time offset between both dictionaries (e.g., to model the delay between the sensors)max_difference -- search radius for candidate generationOutput:matches -- list of matched tuples ((stamp1,data1),(stamp2,data2))"""first_keys = list(first_list)second_keys = list(second_list)potential_matches = [(abs(a - (b + offset)), a, b) for a in first_keys for b in second_keys if abs(a - (b + offset)) < max_difference]potential_matches.sort()matches = []for diff, a, b in potential_matches:if a in first_keys and b in second_keys:first_keys.remove(a)second_keys.remove(b)matches.append((a, b))matches.sort()return matchesif __name__ == '__main__':# parse command lineparser = argparse.ArgumentParser(description='''This script takes two data files with timestamps and associates them   ''')parser.add_argument('first_file', help='first text file (format: timestamp data)')parser.add_argument('second_file', help='second text file (format: timestamp data)')parser.add_argument('--first_only', help='only output associated lines from first file', action='store_true')parser.add_argument('--offset', help='time offset added to the timestamps of the second file (default: 0.0)',default=0.0)parser.add_argument('--max_difference', help='maximally allowed time difference for matching entries (default: 0.02)',default=0.02)args = parser.parse_args()first_list = read_file_list(args.first_file)second_list = read_file_list(args.second_file)matches = associate(first_list, second_list,float(args.offset),float(args.max_difference))    if args.first_only:for a,b in matches:print("%f %s"%(a," ".join(first_list[a])))else:for a,b in matches:print("%f %s %f %s"%(a," ".join(first_list[a]),b-float(args.offset)," ".join(second_list[b])))

运行指令

chmod 777 associate.py
./associate.py rgb.txt depth.txt > associate.txt

最终得到的文件夹内部的结构如图即可:
在这里插入图片描述

这篇关于Ubuntu20.04配置Kinect 2.0驱动安装和ROS环境下配置以及录制bag包和制作ORB-SLAM数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/881237

相关文章

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20