Transformer模型-Multi-Head Attention多头注意力的简明介绍

本文主要是介绍Transformer模型-Multi-Head Attention多头注意力的简明介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天介绍transformer模型的Multi-Head Attention多头注意力。

原论文计算scaled dot-product attention和multi-head attention

实际整合到一起的流程为:

通过之前文章,假定我们已经理解了attention;今天我们按顺序来梳理一下整合之后的顺序。重新梳理Attention Is All You Need(Transformer模型): Attention=距离,权重,概率;Multi-Head attention-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/ank1983/article/details/136998593

当使用多头注意力时,通常d_key = d_value = (d_model / n_heads),其中n_heads是头的数量。研究人员表示,模型之所以能够“关注不同位置的不同表示子空间中的信息”,所以经常使用并行注意力层而不是全维度层。只有一个头时,平均化会阻止这种情况。

第一步:通过线性层W*传递输入Q、K和V

计算注意力的第一步是获取Q、K和V张量;它们分别是查询、键和值张量。它们是通过获取位置编码的嵌入(记作X)并同时将张量传递通过三个线性层(分别记作Wq、Wk和Wv)来计算的。这可以在上面的详细图像中看到。

  • Q = XWq
  • K = XWk
  • V = XWv
  • has a size of (batch_size, seq_length, d_model). An example would be a batch of 32 sequences of length 10 with an embedding of 512, which would have a shape of (32, 10, 512).
  • WqWk, and Wv have a size of (d_model, d_model). Following the example above, they would have a shape of (512, 512).

The linear layers for WqWk, and Wv can be created using nn.Linear(d_model, d_model)

**关于W*和线性层,可参考文章:

学习transformer模型-线性层(Linear Layer),全连接层(Fully Connected Layer)或密集层(Dense Layer)的简明介绍-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/ank1983/article/details/137212380学习transformer模型-权重矩阵Wq,Wk,Wv的简明介绍-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/ank1983/article/details/137160105

第二步:将Q、K和V分割为各自的头

创建了Q、K和V张量后,现在可以通过将d_model的视图更改为(n_heads, d_key)来将它们分割为各自的头。n_heads可以是一个任意数,但在处理较大的嵌入时,通常会选择8、10或12。请注意,d_key = (d_model / n_heads)。

  • Q has a shape of (batch_size, n_heads, Q_length, d_key)
  • K has a shape of (batch_size, n_heads, K_length, d_key)
  • V has a shape of (batch_size, n_heads, V_length, d_key)

第三步:对每个头计算attention

关于点积和矩阵乘法,请参看:

学习transformer模型-点积dot product,计算attention-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/ank1983/article/details/137093906学习transformer模型-矩阵乘法;与点积dot product的关系;计算attention-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/ank1983/article/details/137090019

第四步:把所有头的attention结果拼接到一起(concat)。

把所有头的attention结果拼接到一起(concat)。

拼接操作会逆转最初进行的分割。第一步是转置n_heads和Q_length。第二步是将n_heads和d_key重新拼接在一起以得到d_model。

完成这些步骤后,A将具有(batch_size,Q_length,d_model)的形状。

第五步,也是最后一步:通过线性层Wo输出。

是将A通过Wo传递,其形状为(d_model,d_model)。再次,权重张量在每个批次中的每个序列上广播。最终的输出保持了其形状:

(batch_size,Q_length,d_model)

请注意,这个输出可以与原始输入X进行加权和,从而得到自注意力机制的输出。

用jupyter计算attention(没有multi-head)。可以参看以下文章,

学习transformer模型-用jupyter演示逐步计算attention-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/ank1983/article/details/137151606

原文链接:

https://medium.com/@hunter-j-phillips/multi-head-attention-7924371d477a

这篇关于Transformer模型-Multi-Head Attention多头注意力的简明介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877971

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

mysqld_multi在Linux服务器上运行多个MySQL实例

《mysqld_multi在Linux服务器上运行多个MySQL实例》在Linux系统上使用mysqld_multi来启动和管理多个MySQL实例是一种常见的做法,这种方式允许你在同一台机器上运行多个... 目录1. 安装mysql2. 配置文件示例配置文件3. 创建数据目录4. 启动和管理实例启动所有实例

四种Flutter子页面向父组件传递数据的方法介绍

《四种Flutter子页面向父组件传递数据的方法介绍》在Flutter中,如果父组件需要调用子组件的方法,可以通过常用的四种方式实现,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录方法 1:使用 GlobalKey 和 State 调用子组件方法方法 2:通过回调函数(Callb

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe