稀疏矩阵的三元组表表示法及其转置

2024-04-04 14:28

本文主要是介绍稀疏矩阵的三元组表表示法及其转置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 什么是稀疏矩阵

稀疏矩阵是指矩阵中大多数元素为零的矩阵。

从直观上讲,当元素个数低于总元素的30%时,这样的矩阵被称为稀疏矩阵。

由于该种矩阵的特点,我们在存储这种矩阵时,如果直接采用二维数组,就会十分浪费空间,因为其中大多数元素都是重复的零。

稀疏矩阵的三元组表表示法

对于稀疏矩阵的压缩存储,采用只存储非零元素的方法。

由于稀疏矩阵中非零元素a_{ij}的分布没有规律,因此在存储非零元素值得同时,还必须存储该非零元素在矩阵中的位置信息,即行号和列号。

也就是采用三元组的结构存储:

为处理方便,将稀疏矩阵中非零元素对应的三元组行号依次增大进行存放。

这也就解释了,为什么稀疏矩阵是非零元素占比小于30%的矩阵。

因为采取三元组的结构储存,一个元素会占用三个单元的空间,只有当零元素占比小于30%时,这种存储结构才能在空间上有较明显的收益。

稀疏矩阵三元组表的类型定义

#define ElementType int//一个三元组元素
typedef struct 
{int row, col;//非零元素行下标和列下标ElementType e;
}Triple;//稀疏矩阵
typedef struct 
{Triple* data;//非零元素的三元组表int m, n, len;//矩阵行数,列数,非零元素个数int capacity;//容量
}TSMatrix;

 2. 对稀疏矩阵进行基本操作

//初始化稀疏矩阵
void TSMInite(TSMatrix* ps)
{assert(ps);ps->data = NULL;ps->m = TSM_ROWMAX;ps->n = TSM_COLMAX;ps->len = 0;ps->capacity = 0;
}//销毁稀疏矩阵
void TSMDestroy(TSMatrix* ps)
{assert(ps);free(ps->data);ps->data = NULL;ps->len = 0;ps->capacity = 0;
}//检查扩容
void CheckCapacity(TSMatrix* ps)
{assert(ps);if(ps->capacity == ps->len){int newcapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;Triple* tmp = (Triple*)realloc(ps->data, newcapacity * sizeof(Triple));if(tmp == NULL){perror("realloc");exit(-1);}ps->data = tmp;ps->capacity = newcapacity;}
}//插入元素
void ElemInsert(TSMatrix* ps, Triple x)
{assert(ps);CheckCapacity(ps);if(ps->len == 0){ps->data[ps->len] = x;}if(x.row < ps->data[0].row){for(int j = ps->len; j > 0; j--){ps->data[j] = ps->data[j - 1];}ps->data[0] = x;}elsefor(int i = 0; i < ps->len; i++){if(x.row >= ps->data[i].row&&x.row <= ps->data[i + 1].row||i == ps->len - 1){for(int j = ps->len; j > i + 1; j--){ps->data[j] = ps->data[j - 1];}ps->data[i + 1] = x;break;}}ps->len++;
}//打印元素
void TSMPrint(TSMatrix ps)
{for(int i = 0; i < ps.len; i++){printf("row = %d col = %d e = %d\n", ps.data[i].row, ps.data[i].col, ps.data[i].e);}printf("\n");
}

这些函数基本是以顺序表操作函数为蓝本写的,目的是为了方便我们实现稀疏矩阵的转置。

只不过插入元素的函数需要确保插入之后,三元组的行号是依次递增的。

3. 稀疏矩阵的转置

需要强调的是,矩阵的常规存储是二维的,而三元组表存储是一维的,由于矩阵存储结构的变化,也带来了运算方法的不同,必须认真分析。

3.1 稀疏矩阵转置的经典算法

void TransMatrix(ElementType source[m][n], ElementType dest[n][m])
{int i, j;for(i = 0; i < m; i++)for(j = 0; j < n; j++)dest[j][i] = source[i][j];
}

这个算法是针对传统的二维数组的存储方式。

3.2 用三元组表实现稀疏矩阵的转置

假设A和B是稀疏矩阵source和dest的三元组表,则实现转置的简单方法如下:

1. 三元组表A的行,列互换就可以得到B中的元素。

2. 转置后的矩阵的三元组表B中的三元组不是以“行序为主序”存储的,为保证三元组表B也是以“行序为主序”进行存放的,则需要对该三元组表B按行下标(即A的列下标)以递增顺序重新排列。

 上图中的步骤很容易实现,但是重新排序势必会大量移动元素,从而影响算法的效率。

为避免上述简单转置算法中重新排序引起的元素移动,可采取接下来的两种处理方法。

3.2.1 列序递增转置法

算法思想

这里的列序指的是A的列,也就是按照A的列序来将元素转置到B中。

即将A的第一列全部转置到B中(得到B的第一行)后,再将A的第二列全部转置到B中,以此类推。

代码

//列序递增转置法
void TSMSwitch1(TSMatrix A, TSMatrix* B)
{assert(B);TSMDestroy(B);B->data = (Triple*)malloc(A.capacity * sizeof(Triple));B->capacity = A.capacity;B->len = A.len;B->m = A.n;B->n = A.m;int j = 0;//记录B当前空位for(int k = 0; k < A.n; k++){for(int i = 0; i < A.len; i++){if(A.data[i].col == k){B->data[j].row = A.data[i].col;B->data[j].col = A.data[i].row;B->data[j].e = A.data[i].e;j++;}}}
}

分析

这种算法确实使得我们不用再单独进行排序,但是双重循环依然造成了较高的时间复杂度(O(A.n * A.len))。

那么我们能否降低该算法的时间复杂度呢?

如果能,那么我们的着手点一定是想办法优化掉二重循环。

可以发现,该算法中二重循环出现的原因在于,必须将A的第一列全部转置之后才能转置第二列,每列转置需要重新扫描一次A。

那么,我们有没有办法使得各列同时进行存放呢,这样就只用扫描一次A了。

3.2.2 一次定位快速转置法

算法思想

如果我们知道A的每一列有多少个元素,那么就可以推知B中每一行的起始位置。

这样一来,假如某次在A中扫描到第n列的元素,我们就可以直接将其放到B中的第n行所在位置,而不用先放完一列再放下一列。

所以,我们准备进行三次循环:

1. 定义数组num,数组的下标表示A的列,遍历A并将每一列元素的个数记录在num中。

2. 定义数组position,数组下标表示B的行,遍历position,根据A每一列元素的个数得到对应行的起始位置。

3. 遍历A,根据position数组,将A中的元素转置到B的对应行。

代码 

//一次定位快速转置算法
void TSMSwitch2(TSMatrix A, TSMatrix* B)
{assert(B);TSMDestroy(B);B->data = (Triple*)malloc(A.capacity * sizeof(Triple));B->capacity = A.capacity;B->len = A.len;B->m = A.n;B->n = A.m;int num[B->m];int position[B->m];memset(num, 0, B->m * sizeof(int));memset(num, 0, B->m * sizeof(int));for(int i = 0; i < A.len; i++){num[A.data[i].col]++;}position[0] = 0;for(int row = 1; row < B->m; row++){position[row] = position[row - 1] + num[row - 1];}for(int i = 0; i < A.len; i++){B->data[position[A.data[i].col]].row = A.data[i].col;B->data[position[A.data[i].col]].col = A.data[i].row;B->data[position[A.data[i].col]].e = A.data[i].e;position[A.data[i].col]++;}
}

算法分析

显然,一次定位快速转置算法的时间效率要高得多,它在时间性能上由于列序递增转置法,但在空间耗费上增加了两个辅助向量空间,即num和position。

由此可见,算法在时间上的节省是以更多的储存空间为代价的。

这篇关于稀疏矩阵的三元组表表示法及其转置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876023

相关文章

MYSQL行列转置方式

《MYSQL行列转置方式》本文介绍了如何使用MySQL和Navicat进行列转行操作,首先,创建了一个名为`grade`的表,并插入多条数据,然后,通过修改查询SQL语句,使用`CASE`和`IF`函... 目录mysql行列转置开始列转行之前的准备下面开始步入正题总结MYSQL行列转置环境准备:mysq

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成

python科学计算:NumPy 线性代数与矩阵操作

1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 NumPy 的 array() 函数创建。矩阵的形状可以通过 shape 属性来访问。 import numpy as np# 创建一个 2x3 矩阵mat

稀疏自编码器tensorflow

自编码器是一种无监督机器学习算法,通过计算自编码的输出与原输入的误差,不断调节自编码器的参数,最终训练出模型。自编码器可以用于压缩输入信息,提取有用的输入特征。如,[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]四比特信息可以压缩成两位,[0,0],[1,0],[1,1],[0,1]。此时,自编码器的中间层的神经元个数为2。但是,有时中间隐藏层的神经元

【UVA】10003-Cutting Sticks(动态规划、矩阵链乘)

一道动态规划题,不过似乎可以用回溯水过去,回溯的话效率很烂的。 13988658 10003 Cutting Sticks Accepted C++ 1.882 2014-08-04 09:26:49 AC代码: #include<cstdio>#include<cstring>#include<iostream>#include<algorithm>#include

算法练习题17——leetcode54螺旋矩阵

题目描述 给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。  代码 import java.util.*;class Solution {public List<Integer> spiralOrder(int[][] matrix) {// 用于存储螺旋顺序遍历的结果List<Integer> result = new ArrayList

线性代数 第六讲 特征值和特征向量_相似对角化_实对称矩阵_重点题型总结详细解析

文章目录 1.特征值和特征向量1.1 特征值和特征向量的定义1.2 特征值和特征向量的求法1.3 特征值特征向量的主要结论 2.相似2.1 相似的定义2.2 相似的性质2.3 相似的结论 3.相似对角化4.实对称矩阵4.1 实对称矩阵的基本性质4.2 施密特正交化 5.重难点题型总结5.1 判断矩阵能否相似对角化5.2 已知两个矩阵相似,求某个矩阵中的未知参数5.3 相似时,求可逆矩阵P,使