Python大型数据集(GPU)可视化和Pillow解释性视觉推理及材料粒子凝聚

本文主要是介绍Python大型数据集(GPU)可视化和Pillow解释性视觉推理及材料粒子凝聚,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. P​y​t​ho​n​图像​处理Pillow​库​:🎯打开图像、保存图像、保存期间的压缩方式、读取方法、创建缩略图、创建图像查看器。🎯获取 RGB 值,从图像中获取颜色,更改像素颜色,转换为黑白。创建 4 色照片。创建棕褐色照片 ,创建图像转换器 GUI。🎯获取 Exif 标签数据、获取 GPS Exif 数据、获取 TIFF 标签数据、创建 Exif GUI。🎯滤波器:模糊、轮廓、细节、边缘增强、浮雕、查找边缘、锐化、平滑。🎯裁剪图像、旋转图像、镜像图像、调整图像大小、缩放图像、创建图像旋转器 GUI。🎯调整色彩平衡、调整图像对比度、调整图像亮度、调整图像清晰度。🎯绘制直线、圆弧、弦、椭圆、饼图切片、多边形、矩形,创建绘图 GUI。🎯绘制文本、加载 TrueType 字体、更改文本颜色、绘制多行文本、对齐文本、更改文本不透明度、了解文本锚点、创建文本绘制 GUI。🎯ImageChop 别名、添加图像、使用 ImageChops.darker()、使用 ImageChops.lighter()、查找图像中的差异、反转图像、在图像上使用柔光、在图像上使用强光、覆盖图像、创建混合 GUI。🎯应用自动对比度、对照片进行着色、填充图像、添加边框、删除边框、缩放图像、均衡直方图、调整图像大小和裁剪图像、翻转图像、镜像图像、反转图像、图像色调分离、曝光图像、使用 Exif 方向转置图像、创建 ImageOps GUI。🎯集成Kivy、PySimpleGUI、PyQt、Tkinter、wxPython。🎯创建批处理 CLI 应用程序、使用线程运行批处理应用程序、模块化您的代码、创建批处理 GUI。
  2. Pillow数字图像处理应用:🎯解释性视觉推理,🎯使用OpenGL和GPU交互式二维三维大型数据集可视化。🎯模拟材料粒子凝聚过程。

🍇Pillow数字图像处理

单色图像

from PIL import Imagemode = 'L'
size = (256, 256)
color = 0img = Image.new(mode, size, color)
img.show()

在上面的代码中,我们将导入PIL库的Image模块。 我们创建一个具有 3 个参数(模式、大小和颜色)的新图像。 模式为“L”,表示图像是灰度图像,单个通道代表每个像素的强度。 (我喜欢将“L”视为亮度)。 大小是宽度为 256 像素、高度为 256 像素的元组。 颜色为 0(黑色)。 我们使用 .show() 方法显示临时图像。 当我们运行这个程序时,我们得到如下所示的输出。

接下来,我们将尝试创建带有渐变的单色图像。 我们将写下图像中的每个像素。 为此,我们使用 .putpixel() 方法。 .putpixel() 方法采用 2 个参数,即像素的 (x, y) 坐标和要在该像素处插入的值。 我们需要一个嵌套循环; 外部循环将迭代图像的宽度(x 坐标),内部循环将迭代图像的高度(y 坐标)。

from PIL import Imagemode = 'L'
size = (256, 256)img = Image.new(mode, size)
for x in range(256):for y in range(256):img.putpixel((x, y), x)img.show()

彩色图像

在计算机上存储彩色图像的常见模式是 RGB 加色方案。 它使用 3 种主要计算机显示颜色:红色、绿色和蓝色。 一个像素中这 3 种颜色的数量范围为 0 到 255(总共 256 种颜色)。 当这 3 种颜色组合起来时,我们有 256 * 256 * 256(16,777,216 或超过 1600 万)种不同的颜色。 让我们创建一个红色图像。

from PIL import Imagemode = 'RGB'
size = (256, 256)
color = (255, 0, 0)img = Image.new(mode, size, color)
img.save("Temp.png")

与之前的代码相比,有 2 个变化是模式(现在是 RGB)和颜色(现在是 (255, 0, 0)),即红色 255、绿色 0 和蓝色 0。对于绿色图像,我们将使用 (0, 255, 0),对于蓝色图像,我们将使用 (0, 0, 255)。

在下面的代码中,我们沿 x 轴按递增顺序组合红色和蓝色,以创建洋红色的渐变。

from PIL import Imageimg = Image.new('RGB', (256, 256))for x in range(256):for y in range(256):img.putpixel((x, y), (x, 0, x))
img.show()

彩色图像换为灰度图像

from PIL import Imageimg = Image.open("Peacock.jpg")
img = img.convert('L')img.show()

我们可以使用自己的代码得到类似的灰度图像吗? 为了理解如何做到这一点,让我们看看 (0, 0) 坐标处有什么颜色。 为此,我们使用 .getpixel(pos) 方法,其中 pos 是包含像素的 x 和 y 坐标的元组:

from PIL import Imageimg = Image.open("Peacock.jpg")pix = img.getpixel((0, 0))
print(pix)

上面的结果告诉我们,在 x=0、y=0 时,红色的数量为 51,绿色的数量为 36,蓝色的数量为 31。为了获得该像素的亮度,我们可以对这些数字进行平均。

from PIL import Imageimg = Image.open("Peacock.jpg")pix = img.getpixel((0, 0))
print("Pixel value is", pix)
lum = (pix[0] + pix[1] + pix[2]) // 3
print("Luminosity is", lum)

现在,使用相同的逻辑(平均每个像素的亮度),让我们创建一个灰度图像。

参阅一:计算思维
参阅二:亚图跨际

这篇关于Python大型数据集(GPU)可视化和Pillow解释性视觉推理及材料粒子凝聚的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876022

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss