2013_CVPR_BoF meets HOG Feature Extraction based on Histograms of Oriented p.d.f Gradients for Imag

本文主要是介绍2013_CVPR_BoF meets HOG Feature Extraction based on Histograms of Oriented p.d.f Gradients for Imag,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近看到一篇较新的基于BOF的改进的特征提取算法,来自cvpr'2013,从大的方面来讲,这篇paper的算法改进主要包括以下几个方面:

1.BOF算法采用把特征映射到word上达到降维的目的,然后统计图像的word直方图,这篇文献采用计算特征的pdf(概率密度函数)的方法获得特征的表达,其中计算pdf采用KDE(核密度估计)的算法。一幅图像用一个pdf来表示。

2.求pdf的梯度:对pdf微分。

3.对梯度方向编码,编码的base采用PCA的算法得到。

4.对编码后的梯度进行整合,权值为特征向量到各word的distance。

转自点击打开链接

这篇关于2013_CVPR_BoF meets HOG Feature Extraction based on Histograms of Oriented p.d.f Gradients for Imag的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/871751

相关文章

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

rtmp流媒体编程相关整理2013(crtmpserver,rtmpdump,x264,faac)

转自:http://blog.163.com/zhujiatc@126/blog/static/1834638201392335213119/ 相关资料在线版(不定时更新,其实也不会很多,也许一两个月也不会改) http://www.zhujiatc.esy.es/crtmpserver/index.htm 去年在这进行rtmp相关整理,其实内容早有了,只是整理一下看着方

MACS bdgdiff: Differential peak detection based on paired four bedGraph files.

参考原文地址:[http://manpages.ubuntu.com/manpages/xenial/man1/macs2_bdgdiff.1.html](http://manpages.ubuntu.com/manpages/xenial/man1/macs2_bdgdiff.1.html) 文章目录 一、MACS bdgdiff 简介DESCRIPTION 二、用法

Neighborhood Homophily-based Graph Convolutional Network

#paper/ccfB 推荐指数: #paper/⭐ #pp/图结构学习 流程 重定义同配性指标: N H i k = ∣ N ( i , k , c m a x ) ∣ ∣ N ( i , k ) ∣ with c m a x = arg ⁡ max ⁡ c ∈ [ 1 , C ] ∣ N ( i , k , c ) ∣ NH_i^k=\frac{|\mathcal{N}(i,k,c_{

CVPR 2024最新论文分享┆YOLO-World:一种实时开放词汇目标检测方法

论文分享简介 本推文主要介绍了CVPR 2024上的一篇论文《YOLO-World: Real-Time Open-Vocabulary Object Detection》,论文的第一作者为Tianheng Cheng和Lin Song,该论文提出了一种开放词汇目标检测的新方法,名为YOLO-World。论文通过引入视觉-语言建模和大规模预训练解决了传统YOLO检测器在固定词汇检测中的局限性。论

【机器学习 sklearn】特征筛选feature_selection

特征筛选更加侧重于寻找那些对模型的性能提升较大的少量特征。 继续沿用Titannic数据集,这次试图通过特征刷选来寻找最佳的特征组合,并且达到提高预测准确性的目标。 #coding:utf-8from __future__ import divisionimport sysreload(sys)sys.setdefaultencoding('utf-8')import timest

Android Studio打开Modem模块出现:The project ‘***‘ is not a Gradle-based project

花了挺长时间处理该问题,特记录如下:1.背景: 在Android studio 下导入一个新增的modem模块,如MPSS.DE.3.1.1\modem_proc\AAA, 目的是看代码方便一些,可以自由搜索各种关键字。但导入该项目时出现了如下错误: The project '***' is not a Gradle-based project.造成的问题: (1) project 下没有代码,而

SIM(Search-based user interest modeling)

导读 我们对电商场景兴趣建模的理解愈发清晰:1. 通过预估目标item的信息对用户过去的行为做search提取和item相关的信息是一个很核心有效的技术。2. 更长的用户行为序列信息对CTR建模是非常有效且珍贵的。从用户的角度思考,我们也希望能关注用户长期的兴趣。但是当前的search方法无论是DIN和DIEN都不允许我们在线对一个超长的行为序列比如1000以上做有效搜索。所以我们的目标就比较明

feature_column相关接口

在TensorFlow中,特征列(Feature column)是原始数据和 Estimator 之间的接口,它告诉Estimator如何使用数据。 原始数据集包含各种各样的特征,有的特征是数值,比如年龄,长度、速度;有的特征是文字,比如,地址、Email内容、数据库查询语句等 神经网络接受的输入,只能是数值,而且是整理好的数值 所以,原始数据 和 神经网络输入需求之间需要一个桥梁,这个

Segmentation简记-Multi-stream CNN based Video Semantic Segmentation for Automated Driving

创新点 1.RFCN & MSFCN 总结 网络结构如图所示。输入视频得到图像分割结果。 简单粗暴