本文主要是介绍GMM聚类算法(公式证明分析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
高斯分布
p ( x ∣ μ , σ 2 ) = 1 2 π σ e x p ( − ( x − μ ) 2 2 σ 2 ) p(x|\mu, \sigma^2)=\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(x-\mu)^2}{2\sigma^2}) p(x∣μ,σ2)=2πσ1exp(−2σ2(x−μ)2)
d维多元高斯分布
p ( x ∣ μ , ∑ ) = 1 2 π d 2 ∣ ∑ ∣ 1 2 e x p ( − 1 2 ( x − μ ) ∑ ( x − μ ) ) p(x|\mu, \sum)=\frac{1}{{2\pi}^{\frac{d}{2}}|\sum|^{\frac{1}{2}}}exp(-\frac{1}{2}\frac{(x-\mu)}{\sum(x-\mu)}) p(x∣μ,∑)=2π2d∣∑∣211exp(−21∑(x−μ)(x−μ))
对d维做极大似然估计:
给定数据 D = x 1 , . . . , x N D={x_1,..., x_N} D=x1,...,xN似然是 p ( D ∣ μ , ∑ ) = ∏ n = 1 N p ( x n ∣ μ , ∑ ) p(D|\mu,\sum) = \prod_{n=1}^{N}p(x_n | \mu, \sum) p(D∣μ,∑)=n=1∏Np(xn∣μ,∑)
MLE 估计:
( μ M L , ∑ M L ) = a r g m a x μ , ∑ l o g p ( D ∣ μ , ∑ ) (\mu_{ML},\sum{ML}) = \underset{\mu, \sum}{argmax}logp(D|\mu,\sum) (μML,∑ML)=μ,∑argmaxlogp(D∣μ,∑),
μ M L = 1 N ∑ n = 1 N x n \mu_{ML} = \frac{1}{N}\sum_{n=1}^{N}x_n μML=N1n=1∑Nxn
( ∑ M L ) 2 = 1 N ∑ n = 1 N ( x n − μ M L ) ( x n − μ M L ) T (\sum ML)^2 = \frac{1}{N}\sum_{n=1}^{N}(x_n-\mu_{ML})(x_n-\mu_{ML})^T (∑ML)2=N1n=1∑N(xn−μML)(xn−μML)T
为什么使用高斯分布
如何p(x,y)联合分布是高斯分布,那么p(x)是高斯分布,同样p(y)也是高斯分布。
混合高斯分布
单个高斯分布只有一个mode,单个高斯分布不能模拟多个mode的数据。
使用多个高斯分布,就可以对数据进行聚类。
单峰的高斯分布作为basis 分布,多个高斯分布使用线性叠加(这种思路类似boost的想法),即混合高斯。
p ( x ) = ∑ k = 1 K π k N ( x ∣ μ k , σ k 2 ) p(x) = \sum_{k=1}^{K}\pi_k\mathbb{N}(x|\mu_k, \sigma^2_k) p(x)=k=1∑KπkN(x∣μk,σk2)
对 π k \pi_k πk有约束, ∑ π k = 1 \sum\pi_k=1 ∑πk=1。
学习混合高斯分布
Log -likehood
log似然:
£ ( μ , ∑ ) = l o g p ( D ∣ π , μ , ∑ ) = ∑ n = 1 N l o g ( ∑ k = 1 K π k N ( x ∣ μ k , ∑ k ) \pounds(\mu, \sum) = log p(D|\pi,\mu,\sum) = \sum_{n=1}^{N}log(\sum_{k=1}^K \pi_k\mathbb{N}({x|\mu_k,\sum _k}) £(μ,∑)=logp(D∣π,μ,∑)=n=1∑Nlog(k=1∑KπkN(x∣μk,k∑)
但是MLE是复杂的,对于单个高斯分布,MLE是简单的。
简单的分析:
- ∂ £ ∂ μ k = 0 \frac{\partial \pounds}{\partial \mu_k} = 0 ∂μk∂£=0得到
∑ n = 1 N = π k N ( x n ∣ μ k , ∑ k ) ∑ j π j N ( x n ∣ μ k , ∑ k ) ( ∑ k ( x n − μ k ) ) − 1 \sum_{n=1}^{N} = \frac{\pi_k\mathbb{N}({x_n|\mu_k,\sum _k})}{\sum_j\pi_j\mathbb{N}({x_n|\mu_k,\sum _k})}(\sum_k(x_n-\mu_k))^{-1} n=1∑N=∑jπjN(xn∣μk,∑k)πkN(xn∣μk,∑k)(k∑(xn−μk))−1
另 γ ( z n k ) = π k N ( x n ∣ μ k , ∑ k ) ∑ j π j N ( x n ∣ μ k , ∑ k ) \gamma (z_{nk}) = \frac{\pi_k\mathbb{N}({x_n|\mu_k,\sum _k})}{\sum_j\pi_j\mathbb{N}({x_n|\mu_k,\sum _k})} γ(znk)=∑jπjN(xn∣μk,∑k)πkN(xn∣μk,∑k)
则 μ k = 1 N k ∑ n = 1 N γ ( z n k ) x n \mu_k = \frac{1}{N_k}\sum_{n=1}^{N}\gamma (z_{nk})x_n μk=Nk1∑n=1Nγ(znk)xn,
N k = ∑ n = 1 N γ ( z n k ) N_k= \sum_{n=1}^{N}\gamma (z_{nk}) Nk=∑n=1Nγ(znk) , N k N_k Nk是所有数据拟合到k分布上面的权重和。
这里的 μ k \mu_k μk也是 1 N k \frac{1}{N_k} Nk1求均。
- ∂ £ ∂ ∑ k = 0 \frac{\partial \pounds}{\partial \sum_k} = 0 ∂∑k∂£=0得到
∑ k = 1 N k ∑ n = 1 N γ ( z n k ) ( x n − μ k ) ( x n − μ k ) T \sum_k = \frac{1}{N_k}\sum_{n=1}^N \gamma(z_{nk})(x_n-\mu_k)(x_n - \mu_k)^T ∑k=Nk1∑n=1Nγ(znk)(xn−μk)(xn−μk)T
- 令 ∂ L ∂ π k = 0 \frac{\partial L}{\partial \pi_k} =0 ∂πk∂L=0
由于对 π k \pi_k πk有约束, ∑ π k = 1 \sum\pi_k=1 ∑πk=1,使用拉格朗日求 π k \pi_k πk
L = £ ( μ , ∑ ) + λ ( ∑ k = 1 K π k − 1 ) L = \pounds(\mu, \sum)+\lambda(\sum_{k=1}^K\pi_k -1) L=£(μ,∑)+λ(k=1∑Kπk−1)
∑ n = 1 N N ( x n ∣ μ k , ∑ k ) ∑ j π j N ( x n ∣ μ k , ∑ k ) + λ = 0 \sum_{n=1}^N \frac{\mathbb{N}({x_n|\mu_k,\sum _k})}{\sum_j\pi_j\mathbb{N}({x_n|\mu_k,\sum _k})} + \lambda=0 n=1∑N∑jπjN(xn∣μk,∑k)N(xn∣μk,∑k)+λ=0
π k = N k N \pi_k=\frac{N_k}{N} πk=NNk
综上结果
π k = N k N \pi_k=\frac{N_k}{N} πk=NNk
μ k = 1 N k ∑ n = 1 N γ ( z n k ) x n \mu_k = \frac{1}{N_k}\sum_{n=1}^{N}\gamma (z_{nk})x_n μk=Nk1∑n=1Nγ(znk)xn
∑ k = 1 N k ∑ n = 1 N γ ( z n k ) ( x n − μ k ) ( x n − μ k ) T \sum_k = \frac{1}{N_k}\sum_{n=1}^N \gamma(z_{nk})(x_n-\mu_k)(x_n - \mu_k)^T ∑k=Nk1∑n=1Nγ(znk)(xn−μk)(xn−μk)T
γ ( z n k ) = π k N ( x n ∣ μ k , ∑ k ) ∑ j π j N ( x n ∣ μ k , ∑ k ) \gamma (z_{nk}) = \frac{\pi_k\mathbb{N}({x_n|\mu_k,\sum _k})}{\sum_j\pi_j\mathbb{N}({x_n|\mu_k,\sum _k})} γ(znk)=∑jπjN(xn∣μk,∑k)πkN(xn∣μk,∑k)
关键是求,但是 γ ( z n k ) \gamma (z_{nk}) γ(znk) 是未知的。
EM算法引入
解决上面鸡生蛋,蛋生鸡的 γ ( z n k ) \gamma (z_{nk}) γ(znk)求解。
E-step
γ ( z n k ) = π k N ( x n ∣ μ k , ∑ k ) ∑ j π j N ( x n ∣ μ k , ∑ k ) \gamma (z_{nk}) = \frac{\pi_k\mathbb{N}({x_n|\mu_k,\sum _k})}{\sum_j\pi_j\mathbb{N}({x_n|\mu_k,\sum _k})} γ(znk)=∑jπjN(xn∣μk,∑k)πkN(xn∣μk,∑k), γ \gamma γ实际上是后验分布,假设第n个样本拟合到k分布上面 p ( z n k = 1 ∣ x n , μ , ∑ ) p(z_{nk}=1 | x_n, \mu, \sum) p(znk=1∣xn,μ,∑)。
M-step
π k = N k N \pi_k=\frac{N_k}{N} πk=NNk
μ k = 1 N k ∑ n = 1 N γ ( z n k ) x n \mu_k = \frac{1}{N_k}\sum_{n=1}^{N}\gamma (z_{nk})x_n μk=Nk1∑n=1Nγ(znk)xn
∑ k = 1 N k ∑ n = 1 N γ ( z n k ) ( x n − μ k ) ( x n − μ k ) T \sum_k = \frac{1}{N_k}\sum_{n=1}^N \gamma(z_{nk})(x_n-\mu_k)(x_n - \mu_k)^T ∑k=Nk1∑n=1Nγ(znk)(xn−μk)(xn−μk)T
不断的迭代E步和M步进行计算,这里初始点的选取会影响混合高斯聚类的结果。
理解高斯分布
对于 p ( x ) = ∑ k = 1 K π k N ( x ∣ μ k , ∑ k ) p(x) = \sum_{k=1}^{K}\pi_k \mathbb{N}(x|\mu_k, \sum_k) p(x)=∑k=1KπkN(x∣μk,∑k)引入选择变量z
z = ( 0 1 0 ) z = \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} z=⎝⎛010⎠⎞
p ( x , z ) = ∑ k = 1 K π k z k N ( x ∣ μ k , ∑ k ) z k p(x,z) = \sum_{k=1}^{K}\pi_k^{z_k} \mathbb{N}(x|\mu_k, \sum_k)^{z_k} p(x,z)=∑k=1KπkzkN(x∣μk,∑k)zk
- 重新定义log-likehood
l o g p ( D ∣ Θ ) = ∑ n = 1 N l o g ( ∑ z n p ( x n , z n ) ) logp(D|\Theta )=\sum_{n=1}^Nlog(\sum_{z_n}p(x_n, z_n)) logp(D∣Θ)=∑n=1Nlog(∑znp(xn,zn))
这里的 l o g ∑ log\sum log∑是很难求导的,所以我们使用Jensen不等式近似
l o g x 1 + x 2 2 ≥ l o g x 1 + l o g x 2 2 log\frac{x_1+x_2}{2} \geq \frac{logx_1 + logx_2}{2} log2x1+x2≥2logx1+logx2 或者使用期望的表示方法 l o g E p ( x ) [ x ] ≥ E p ( x ) [ l o g x ] logE_{p(x)}[x] \geq E_{p(x)}[logx] logEp(x)[x]≥Ep(x)[logx]
引入 q ( z n ) q(z_n) q(zn)(在机器学习里面称为 Evidence lower bound):
l o g p ( D ∣ Θ ) = ∑ n = 1 N l o g ( ∑ z n q ( z n ) p ( x n , z n ) q ( z n ) ) ≥ ∑ n = 1 N ∑ z n q ( z n ) l o g ( p ( x n , z n ) q ( z n ) ) ≅ £ ( θ , q ( Z ) ) logp(D|\Theta )=\sum_{n=1}^Nlog(\sum_{z_n}q(z_n)\frac{p(x_n, z_n)}{q(z_n)}) \geq \sum_{n=1}^N\sum_{z_n}q(z_n)log(\frac{p(x_n,z_n)}{q(z_n)}) \cong \pounds(\theta , q(Z)) logp(D∣Θ)=n=1∑Nlog(zn∑q(zn)q(zn)p(xn,zn))≥n=1∑Nzn∑q(zn)log(q(zn)p(xn,zn))≅£(θ,q(Z))
q 一般意义上称为变分分布(变分的方法)。
但是lower bound 是可紧可松的,如何约定GAP
£ ( θ , q ( Z ) ) = ∑ n = 1 N { ∑ z n q ( z n ) l o g p ( x n , z n ) − ∑ z n q ( z n ) l o g q ( z n ) } = ∑ n = 1 N { ∑ z n q ( z n ) l o g ( p ( x n , z n ) p ( x n ) ) + l o g p ( x n ) − ∑ z n q ( z n ) l o g q ( z n ) } = l o g p ( D ∣ θ ) + ∑ n = 1 N { ∑ z n q ( z n ) l o g p ( z n ∣ x n ) − ∑ z n q ( z n ) l o g q ( z n ) } = l o g p ( D ∣ θ ) − K L ( q ( Z ) ∣ ∣ p ( Z ∣ D ) ) \pounds(\theta , q(Z))=\sum_{n=1}^N\left \{\sum_{z_n}q(z_n)logp(x_n,z_n) - \sum_{z_n}q(z_n)logq(z_n)\right \}\\ = \sum_{n=1}^N \left \{ \sum_{z_n}q(z_n)log(\frac{p(x_n,z_n)}{p(x_n)}) +logp(x_n) - \sum_{z_n}q(z_n)logq(z_n) \right \}\\ =logp(D|\theta) + \sum_{n=1}^N \left \{ \sum_{z_n}q(z_n)logp(z_n|x_n) -\sum_{z_n}q(z_n)logq(z_n) \right \}\\ =logp(D|\theta) - KL(q(Z)||p(Z|D)) £(θ,q(Z))=n=1∑N{zn∑q(zn)logp(xn,zn)−zn∑q(zn)logq(zn)}=n=1∑N{zn∑q(zn)log(p(xn)p(xn,zn))+logp(xn)−zn∑q(zn)logq(zn)}=logp(D∣θ)+n=1∑N{zn∑q(zn)logp(zn∣xn)−zn∑q(zn)logq(zn)}=logp(D∣θ)−KL(q(Z)∣∣p(Z∣D))
上式中 l o g p ( D ∣ θ ) = ∑ n = 1 N l o g p ( x n ) logp(D|\theta) = \sum_{n=1}^Nlogp(x_n) logp(D∣θ)=∑n=1Nlogp(xn)
所以lower bound的GAP是一个KL散度。
£ ( θ , q ( Z ) ) \pounds(\theta , q(Z)) £(θ,q(Z)) 与 l o g p ( D ∣ θ ) logp(D|\theta) logp(D∣θ)之间的GAP是KL散度,
l o g p ( D ∣ θ ) − £ ( θ , q ( Z ) ) = K L ( q ( Z ) ∣ ∣ p ( Z ∣ D ) ) logp(D|\theta) - \pounds(\theta , q(Z)) = KL(q(Z)||p(Z|D)) logp(D∣θ)−£(θ,q(Z))=KL(q(Z)∣∣p(Z∣D))
要使得GAP最小,则 K L ( q ( Z ) ∣ ∣ p ( Z ∣ D ) ) = 0 KL(q(Z)||p(Z|D)) =0 KL(q(Z)∣∣p(Z∣D))=0
- EM算法
最大化lower bound或者最小化GAP
E 步:
Maximize over q(Z) -> ∂ £ ∂ q = 0 \frac{\partial \pounds}{\partial q} =0 ∂q∂£=0
其中 q ( z n ) = p ( z n ∣ x n ) q(z_n) = p(z_n|xn) q(zn)=p(zn∣xn)等价与前面的 γ ( z n k ) \gamma(z_{nk}) γ(znk)
M 步:
Maximize over θ \theta θ -> ∂ £ ∂ θ = 0 \frac{\partial \pounds}{\partial \theta} =0 ∂θ∂£=0
这篇关于GMM聚类算法(公式证明分析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!