Databricks发布MoE大模型DBRX:1320亿参数开源模型,推理速度提升2倍,评测超越ChatGPT和LLama

本文主要是介绍Databricks发布MoE大模型DBRX:1320亿参数开源模型,推理速度提升2倍,评测超越ChatGPT和LLama,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在人工智能领域,大型语言模型(LLM)的研发一直是技术竞争的前沿。最近,Databricks公司推出的DBRX模型,以其1320亿参数的规模和创新的细粒度MoE(混合专家)架构,成为开源社区的焦点。本文将深入探讨DBRX模型的关键技术细节、性能评测、以及它在推理速度、成本效率和多模态处理能力上的显著优势。

DBRX模型简介

DBRX是一种基于Transformer架构的混合专家模型,总参数达到1320亿,其中每次推理只激活360亿参数。这种细粒度的MoE架构不仅大幅提高了模型的处理速度,还显著降低了训练成本。Databricks声称,使用这种架构,DBRX的推理速度比LLaMA 2-70B快了2倍,同时训练成本直接减半,仅需1000万美元和3072块NVIDIA H100 GPU。

  • Huggingface模型下载:https://huggingface.co/databricks/dbrx-instruct

  • AI快站模型免费加速下载:https://aifasthub.com/models/databricks

技术亮点

DBRX模型采用了多项创新技术来实现其卓越性能:

  • 细粒度MoE架构:DBRX拥有16个不同的专家,在每层为每个token选择4个专家进行处理,大大增加了处理效率和模型质量。

  • 旋转位置编码(RoPE)、门控线性单元(GLU)和分组查询注意力(GQA):这些技术的使用进一步提高了模型的准确性和响应速度。

  • 高效预训练策略:DBRX模型在12万亿Token的文本和代码上进行预训练,支持的最大上下文长度为32K。

性能评测

在多个基准测试中,DBRX模型表现出色,超越了当前开源模型的SOTA(State of the Art)水平,甚至在某些方面超越了闭源的大模型如ChatGPT和Llama。尤其在语言理解、编程和数学方面的任务,DBRX模型展现了其强大的处理能力和准确性。

  • DBRX 与开源模型比较

  • DBRX 与闭源模型比较

  • 长下文任务和 RAG

推理速度与成本效率

DBRX模型的另一个突出优势是其推理速度和成本效率。利用细粒度MoE架构,DBRX在保持高模型质量的同时,实现了更快的处理速度和更低的训练成本。这对于需要处理大量数据和复杂计算任务的企业和研究机构来说,具有极大的吸引力。

结论

Databricks发布的DBRX模型是开源大模型发展的一个重要里程碑。其创新的细粒度MoE架构、高效的预训练策略和显著的性能优势,为AI领域的发展提供了新的动力。随着DBRX模型的进一步优化和应用,预计会在多个领域带来突破性的进展。

模型下载

Huggingface模型下载

https://huggingface.co/databricks/dbrx-instruct

AI快站模型免费加速下载

https://aifasthub.com/models/databricks

这篇关于Databricks发布MoE大模型DBRX:1320亿参数开源模型,推理速度提升2倍,评测超越ChatGPT和LLama的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/869657

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca