蓝桥杯算法基础(32):素数,埃式筛法,快速幂,斐波那契与矩阵幂运算

本文主要是介绍蓝桥杯算法基础(32):素数,埃式筛法,快速幂,斐波那契与矩阵幂运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

素数

有些人认为一个人一生中有三个周期,从他或她出生的那一天开始。
这三个周期是身体周期,情感周期的和智力的周期,他们有周期的长度为23,28,
和33天。每一个周期都有一个高峰。在一个周期的高峰期,
一个人在他/她在相应的领域(身体,情绪或精神)。
例如,如果它是心理曲线,思维过程会更清晰和集中会更容易。
由于三个周期有不同的周期,所以这三个周期的峰值一般发生在不同的时间。
我们想确定何时发生绝对高潮(所有三个周期的峰值发生在同一天)。
因为处于绝对高潮时人各方面均表现优异,因此人们想知道绝对高潮在哪一天出现。
对身体周期,情绪周期和智力周期,给出本年内他们各自的一个高潮日(不一定是第一个)后经过的天数p,e,i。另外,给出本年内已经经过的天数d(d>=0).求出在d所代表的日期多少天后,
三种周期的高潮日又一次在同一天出现。输入:输入数据有多组,每组测试数据占一行,有四个整数,p,e,i和d.  p,e,i 分别代表从0开始计时,身体周期,情感周期和智力周期首次出现高潮的日期,要求编程计算经过d后多少天第一个绝对高潮出现,输入保证绝对高潮在21252内的某一天出现。输入以-1,-1,-1结束。输出:例如:Case 1: the next triple peak occurs in 1234 days.23 28 33
d1 d2 d3d1+23k1=x
d2+28k2=x
d3+33k3=xx≡d1 %23≡d2 %28≡d3 %33//延续上体的解题方法
//逐级合并法
x=a1(%m1)=a2(%m2)=a3(%m3)
x=a1+m1y1 (1)
x=a2+m2y2
==>m1y1-m2y2=a2-a1这是一个线性方程可解出y1  linearEquation(m1,m2,a2-a1)带回(1).得特解x0=a1+m1*y1-->x=x0+k*lcm(m1,m2)得一个新方程//lcm(m1,m2),m1,m2得公倍数x≡x0 (%lcm(m1,m2))形成新的a(x0),新的m(lcm(m1,m2))public static void main(String[] args)throws Exceeption{Scanner sc= new Scanner(System.in);int t=1;List<long[]> aList=new ArrayList<long[]>();List<long> dList=new ArrayList<long>();while(sc.hasNext()){long[] a={sc.nextLong(),sc.nextLong(),sc.Long()};long d=sc.nextLong();if(a[0]==-1&&a[1]==-1&&a[2]=-1&&d==-1)break;else{aList.add(a);aList.add(d);}}for(int i=0;i<aList.size();i++){long[] a=aList.get(i);long d=dList.get(i);long[] m={23,28,33};long res=Case05_ExtGcd.linearEquationGroup(a,m);while(res<=d){res+=21252;//保证在21252内,就是以21252为模}System.out.println("Case"+(t++)+": the next triple peak occurs in"+(res-d)+"days");}}

埃式筛法

public static void mian(){long now=System.currentTimeMillis();m1(100000);System.out.println(”耗时“+(System.currentTimeMillis()-now)+"ms" );
}private static void  m1(int N){//N是第N个素数//已知在整数X内大概有x/log(X)个素数//现在我们要逆推,要想求第N个素数,我们的整数范围是社么//length就是整数范围int n=2;while(n/log(n)<N){//n个数中,大概有n/log(n)个素数n++;}//开辟一个数组,下标是自然数,值是标记//基本思路是筛选法,把非素数标记出来//int[] arr=new int[n];int x=2;while(x<n){//标记过了。继续下一个if(arr[x]!=0){continue;}int k=2;//对每个x,我们都从2倍开始,对x的k倍,全部标记-1while(x*k<n){arr[x*k]=-1;k++;}x++;}//System.out,println(arr);//筛完之后,这个很长的数组里面非素数下标对应的值都是-1int sum=0;for(int i=2;i<arr.length;i++){//是素数,计数+1if(arr[i]==0){sum++;}if(sum==N){System.out,println(i);}}
}

 快速幂

反复平方
a^10    8 0 2 01 0 1 0
a^(2^3) a^(2^2) a^(2^1) a^(a^0);将次方转成二进制,哪一位有1,就乘以那一位所在的a的平方值
如 a^10=a^(2^3)*a(2^1)public static long ex2(long n,long m){long primeFangShu = n;//n的1次方long result=1;while(m!=0){if((m&1)==1){result*=pingFangShu;//每移位一次,幂累成方一次pingFangShu=pingFangShu*pingFangShu;//无论等不等于1,次方都成倍乘//右移一位m>>=1;}return result;}}

 斐波那契与矩阵幂运算

(f1.f2)=(1,1)(f1,f2)*[0 1]=[f2.f3] //0+1=1=f1,1+1=2=f3=f1+f2[1 1](f1.f2)*[0 1]^2=[f3,f4][1 1]....递推[f1,f2]*[0 1]^n-1=[fn,fn+1][1 1]public static long fib(long n){if(n==1||n==2)return1;long[][] matrix={{0,1},{1,1}};long[][] res=Util.matrixPower(matrix,n-1);//矩阵的乘方res=Util.matrixMultiply(new long[][]{(1,1)},res);//矩阵的乘方与f1f2相乘return res[0][0];}public long[][] matrixPower(long[][] matrix,long p){//初始化结果为单位矩阵,对角线为1
long[][] result=new long[matrix.length][matrix[0].length];
//单位矩阵。相当于整数的1for(int i=0;i<result.length;i++){result[i][i]=1;}//平方数
long[][] pingFang=matrix;//一次方for(;p!=0;p++){while(p!=0){if((p&1)!=0){//当前二进制最低位1,将当前平方数乘到结果中result=matrixMultiply(result,pingFang);}平方数继续上翻pinFang=matrixMultiply(pingFang,pingFang);p>>1;}return result;
}}

这篇关于蓝桥杯算法基础(32):素数,埃式筛法,快速幂,斐波那契与矩阵幂运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/861356

相关文章

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

Python如何快速下载依赖

《Python如何快速下载依赖》本文介绍了四种在Python中快速下载依赖的方法,包括使用国内镜像源、开启pip并发下载功能、使用pipreqs批量下载项目依赖以及使用conda管理依赖,通过这些方法... 目录python快速下载依赖1. 使用国内镜像源临时使用镜像源永久配置镜像源2. 使用 pip 的并