分类任务中的评估指标:Accuracy、Precision、Recall、F1

2024-03-28 19:12

本文主要是介绍分类任务中的评估指标:Accuracy、Precision、Recall、F1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概念理解

T P TP TP T N TN TN F P FP FP F N FN FN

在这里插入图片描述

在这个二分类模型中,只有 是「狗」不是「狗」

在这里插入图片描述

只看模型的预测为「狗」即 P r e d i c t i o n = D o g Prediction=Dog Prediction=Dog,共有 7 个如绿色方格所示。其中,

  • 真实为「狗」且被模型正确预测为「狗」的有 4 个,这就是 T r u e P o s i t i v e = 4 True\ Positive=4 True Positive=4 T P TP TP);
  • 真实不为「狗」但被模型错误预测为「狗」的有 3 个,这就是 F a l s e P o s i t i v e = 3 False\ Positive=3 False Positive=3 F P FP FP)。

在这里插入图片描述

只看模型的预测不为「狗」即 P r e d i c t i o n = N o D o g Prediction=No\ Dog Prediction=No Dog,共有 3 个如红色方格所示。其中,

  • 真实不为「狗」且被模型正确预测不为「狗」的有 1 个,这就是 T r u e N e g a t i v e = 1 True\ Negative=1 True Negative=1 T N TN TN);
  • 真实为「狗」但被模型错误预测不为「狗」的有 2 个,这就是 F a l s e N e g a t i v e = 2 False\ Negative=2 False Negative=2 F N FN FN)。

精度/正确率( A c c u r a c y Accuracy Accuracy

  • 误差( E r r o r Error Error):学习器的 预测输出 与样本的 真实输出 之间的差异。
  • 错误率:错误分类的样本 占据 总样本 的比例。

精度( A c c u r a c y Accuracy Accuracy)= 1- 错误率,即 正确分类的样本占总样本的比例

在这里插入图片描述

A c c u r a c y Accuracy Accuracy 是分类问题中最常用的指标。但是,对于不平衡数据集而言, A c c u r a c y Accuracy Accuracy 并不是一个好指标。 W h y ? Why? Why

假设有 100 张图片,其中 98 张图片是「狗」,1 张是「猫」,1 张是「猪」,要训练一个三分类器,能正确识别图片里动物的类别。

  • 其中,狗这个类别就是大多数类( M a j o r i t y C l a s s Majority\ Class Majority Class)。
  • 当大多数类中样本(狗)的数量远超过其他类别(猫、猪)时,如果采用 A c c u r a c y Accuracy Accuracy 来评估分类器的好坏,那么即便模型性能很差(如无论输入什么图片,都预测为「狗」),也可以得到较高的 A c c u r a c y S c o r e Accuracy\ Score Accuracy Score(如 98%)。
  • 此时,虽然 A c c u r a c y S c o r e Accuracy\ Score Accuracy Score 很高,但是意义不大。
  • 当数据异常不平衡时, A c c u r a c y Accuracy Accuracy 评估方法的缺陷尤为显著

因此,需要引入 P r e c i s i o n Precision Precision (精准度), R e c a l l Recall Recall (召回率)和 F 1 − s c o r e F1-score F1score 评估指标。

考虑到二分类和多分类模型中,评估指标的计算方法略有不同,下面分开讨论。

二分类

在二分类问题中,假设该样本一共有两种类别: P o s i t i v e Positive Positive N e g a t i v e Negative Negative

当分类器预测结束,可以绘制出混淆矩阵( C o n f u s i o n M a t r i x Confusion\ Matrix Confusion Matrix),如下图,

在这里插入图片描述

其中分类结果分为如下几种:

  • T r u e P o s i t i v e True\ Positive True Positive T P TP TP):把正样本成功预测为正。
  • T r u e N e g a t i v e True\ Negative True Negative T N TN TN):把负样本成功预测为负。
  • F a l s e P o s i t i v e False\ Positive False Positive F P FP FP):把负样本错误预测为正。
  • F a l s e N e g a t i v e False\ Negative False Negative F N FN FN):把正样本错误预测为负。

有了混淆矩阵的 T P TP TP T N TN TN F P FP FP F N FN FN,下面计算 P r e c i s i o n Precision Precision R e c a l l Recall Recall F 1 − s c o r e F1-score F1score

查准率 P r e c i s i o n Precision Precision,查全率 R e c a l l Recall Recall F 1 − s c o r e F1-score F1score 的计算

在这里插入图片描述

  • 准确率:关注预测的准确性,在 所有被预测为 P o s i t i v e Positive Positive 的样本 中,有多少是正确的(有多少 T r u e True True P o s i t i v e Positive Positive)?
  • 召回率:关注预测的全面性,在 所有实际为 P o s i t i v e Positive Positive 的样本 中,有多少被正确预测了(有多少 P o s i t i v e Positive Positive 被揪出来了)?

在二分类模型中, A c c u r a c y Accuracy Accuracy,查准率 P r e c i s i o n Precision Precision,查全率 R e c a l l Recall Recall F 1 − s c o r e F1-score F1score 的定义如下:

A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy = \frac{TP+TN}{TP+TN+FP+FN} Accuracy=TP+TN+FP+FNTP+TN

P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP+FP} Precision=TP+FPTP

R e c a l l = T P T P + F N Recall = \frac{TP}{TP+FN} Recall=TP+FNTP

F 1 − s c o r e = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l F1-score = \frac{2×Precision×Recall}{Precision+Recall} F1score=Precision+Recall2×Precision×Recall

代入 T P TP TP T N TN TN F P FP FP F N FN FN 的数值计算即可,如下:

A c c u r a c y = 50 + 20 50 + 20 + 5 + 10 = 14 / 17 Accuracy = \frac{50+20}{50+20+5+10} =14/17 Accuracy=50+20+5+1050+20=14/17

P r e c i s i o n = 50 50 + 5 = 10 / 11 Precision=\frac{50}{50+5}=10/11 Precision=50+550=10/11

R e c a l l = 50 50 + 10 = 5 / 6 Recall=\frac{50}{50+10}=5/6 Recall=50+1050=5/6

F 1 − s c o r e = 2 × 10 11 × 5 6 10 11 + 5 6 = 20 / 23 F1-score=\frac{2×\frac{10}{11}×\frac{5}{6}}{\frac{10}{11}+\frac{5}{6}}=20/23 F1score=1110+652×1110×65=20/23

查准率 P r e c i s i o n Precision Precision,查全率 R e c a l l Recall Recall F 1 − s c o r e F1-score F1score 的理解

  • P r e c i s i o n Precision Precision 着重评估:在 预测为 P o s i t i v e Positive Positive 的所有数据 T P + F P TP+FP TP+FP)中,真实 P o s i t i v e Positive Positive 的数据 T P TP TP)到底占多少?
  • R e c a l l Recall Recall 着重评估:在 所有真实为 P o s i t i v e Positive Positive 数据 T P + F N TP+FN TP+FN)中,被 成功预测为 P o s i t i v e Positive Positive 的数据 T P TP TP)到底占多少?

举个例子,一个医院新开发了一套癌症 A I AI AI 诊断系统,想评估其性能好坏。把病人得了癌症定义为 P o s i t i v e Positive Positive,没得癌症定义为 N e g a t i v e Negative Negative。那么,到底该用什么指标进行评估呢?

  • 如用 P r e c i s i o n Precision Precision 对系统进行评估,那么其回答的问题就是:在诊断为癌症的一堆人中,到底有多少人真得了癌症?
  • 如用 R e c a l l Recall Recall 对系统进行评估,那么其回答的问题就是:在一堆得了癌症的病人中,到底有多少人能被成功检测出癌症?
  • 如用 A c c u r a c y Accuracy Accuracy 对系统进行评估,那么其回答的问题就是:在一堆癌症病人和正常人中,有多少人被系统给出了正确诊断结果?

O K OK OK,那啥时候应该更注重 R e c a l l Recall Recall 而不是 P r e c i s i o n Precision Precision 呢?

R e c a l l = T P T P + F N Recall = \frac{TP}{TP+FN} Recall=TP+FNTP

F a l s e N e g a t i v e False Negative FalseNegative F N FN FN)的成本代价很高(后果很严重),希望尽量避免产生 F N FN FN 时,应该着重考虑提高 R e c a l l Recall Recall 指标 F N FN FN 越小, R e c a l l Recall Recall 越高)。

在上述例子里, F a l s e N e g a t i v e False Negative FalseNegative 是得了癌症的病人没有被诊断出癌症,这种情况是最应该避免的。

  • 宁可把健康人误诊为癌症 ( F P FP FP),也不能让真正患病的人检测不出癌症 ( F N FN FN) 而耽误治疗离世。

在这里,癌症诊断系统 的目标是:尽可能提高 R e c a l l Recall Recall 值,哪怕牺牲一部分 P r e c i s i o n Precision Precision

O h o Oho Oho,那啥时候应该更注重 P r e c i s i o n Precision Precision 而不是 R e c a l l Recall Recall 呢?

P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP+FP} Precision=TP+FPTP

F a l s e P o s i t i v e False Positive FalsePositive F P FP FP)的成本代价很高(后果很严重)时,即期望尽量避免产生 F P FP FP 时,应该着重考虑提高 P r e c i s i o n Precision Precision 指标 F P FP FP 越小, P r e c i s i o n Precision Precision 越高)。

以垃圾邮件屏蔽系统为例,垃圾邮件为 P o s i t i v e Positive Positive,正常邮件为 N e g a t i v e Negative Negative F a l s e P o s i t i v e False Positive FalsePositive 是把正常邮件识别为垃圾邮件,这种情况是最应该避免的。

  • 宁可把垃圾邮件标记为正常邮件( F N FN FN),也不能让正常邮件直接进垃圾箱( F P FP FP)。>
    垃圾邮件屏蔽系统 的目标是:尽可能提高 P r e c i s i o n Precision Precision 值,哪怕牺牲一部分 R e c a l l Recall Recall

F 1 − s c o r e F1-score F1score P r e c i s i o n Precision Precision R e c a l l Recall Recall 两者的综合。

F 1 − s c o r e = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l F1-score = \frac{2×Precision×Recall}{Precision+Recall} F1score=Precision+Recall2×Precision×Recall

假设检察机关想要将罪犯逮捕归案,就需要对所有人群进行分析,判断某人是犯了罪( P o s i t i v e Positive Positive)还是没有犯罪( N e g a t i v e Negative Negative)。
显然,检察机关希望既不错过任何一个罪犯(提高 R e c a l l Recall Recall),也不错判一个无辜者(提高 P r e c i s i o n Precision Precision),因此需要同时考虑 R e c a l l Recall Recall P r e c i s i o n Precision Precision 这两个指标。

  • “天网恢恢,疏而不漏,任何罪犯都难逃法网” 更倾向于 R e c a l l Recall Recall
  • “宁可放过一些罪犯,也不冤枉一个无辜者” 更倾向于 P r e c i s i o n Precision Precision

到底哪种更好呢?显然, P r e c i s i o n Precision Precision R e c a l l Recall Recall 都应该尽可能高,也就是说 F 1 − s c o r e F1-score F1score 应该尽可能高。

三分类

从特殊

要开发一个动物识别系统,来区分输入图片是猫,狗还是猪。给定分类器一堆动物图片,产生了如下结果混淆矩阵。

在这里插入图片描述

在混淆矩阵中,正确的分类样本 A c t u a l l a b e l = P r e d i c t e d l a b e l Actual\ label = Predicted\ label Actual label=Predicted label)分布在 左上到右下的对角线上

其中, A c c u r a c y Accuracy Accuracy 的定义为分类正确(对角线上)的样本数与总样本数的比值。

  • A c c u r a c y Accuracy Accuracy 度量的是全局样本预测情况。
  • 而对于 P r e c i s i o n Precision Precision R e c a l l Recall Recall 而言,每个类都需要单独计算其 P r e c i s i o n Precision Precision R e c a l l Recall Recall

比如,对类别「猪」而言,其 P r e c i s i o n Precision Precision R e c a l l Recall Recall 分别为:

P r e c i s i o n = T P T P + F P = 20 20 + ( 10 + 40 ) = 2 / 7 Precision = \frac{TP}{TP+FP} = \frac{20}{20+(10+40)} = 2/7 Precision=TP+FPTP=20+(10+40)20=2/7

R e c a l l = T P T P + F N = 20 20 + ( 0 + 10 ) = 2 / 3 Recall = \frac{TP}{TP+FN} = \frac{20}{20+(0+10)} = 2/3 Recall=TP+FNTP=20+(0+10)20=2/3

总的来说,

P r e s i c i o n Presicion Presicion 如下: P c a t = 8 / 15 , P d o g = 1 / 23 , P p i g = 2 / 7 P_{cat}=8/15, P_{dog}=1/23, P_{pig}=2/7 Pcat=8/15,Pdog=1/23,Ppig=2/7

R e c a l l Recall Recall 如下: R c a t = 4 / 7 , R d o g = 17 / 23 , R p i g = 2 / 3 R_{cat}=4/7, R_{dog}=17/23, R_{pig}=2/3 Rcat=4/7,Rdog=17/23,Rpig=2/3

到一般

在这里插入图片描述

A c c u r a c y Accuracy Accuracy

  • A c c u r a c y Accuracy Accuracy :正确分类的样本数 / / / 所有样本数。
    (即:左上角到右下角的对角线上的样本数之和 / / / 总样本数 = ( A , A ) + ( B , B ) + ( C , C ) T o t a l \frac{(A,A)+(B,B)+(C,C)}{Total} Total(A,A)+(B,B)+(C,C))。

A c c u r a c y = ( 15 + 15 + 45 ) / 100 = 0.75 Accuracy= (15 +15+ 45)/100 = 0.75 Accuracy=(15+15+45)/100=0.75

P r e c i s i o n Precision Precision

A A A 类来说,

  • P r e c i s i o n Precision Precision:(预测为正确 & 真实为正确)的样本 / / / 预测为正确的所有样本。
    (即: ( A , A ) (A,A) (A,A) 的值 / / / A A A 所在列的 T o t a l A − c o l u m n Total_{A-column} TotalAcolumn = ( A , A ) ( A , A ) + ( B , A ) + ( C , A ) \frac{(A,A)}{(A,A)+(B,A)+(C,A)} (A,A)+(B,A)+(C,A)(A,A)

在这里插入图片描述

P r e c i s i o n ( A ) = 15 / 24 = 0.625 Precision (A) = 15/24 = 0.625 Precision(A)=15/24=0.625

R e c a l l Recall Recall

  • R e c a l l Recall Recall:(预测为正确 & 真实是正确)的样本 / / / 真实是正确的所有样本。
    (即: ( A , A ) (A,A) (A,A) 的值 / / / A A A 所在行的 T o t a l A − l i n e Total_{A-line} TotalAline = ( A , A ) ( A , A ) + ( A , B ) + ( A , C ) \frac{(A,A)}{(A,A)+(A,B)+(A,C)} (A,A)+(A,B)+(A,C)(A,A)

在这里插入图片描述

R e c a l l ( A ) = 15 / 20 = 0.75 Recall (A)= 15/20 = 0.75 Recall(A)=15/20=0.75

这篇关于分类任务中的评估指标:Accuracy、Precision、Recall、F1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/856464

相关文章

Python Invoke自动化任务库的使用

《PythonInvoke自动化任务库的使用》Invoke是一个强大的Python库,用于编写自动化脚本,本文就来介绍一下PythonInvoke自动化任务库的使用,具有一定的参考价值,感兴趣的可以... 目录什么是 Invoke?如何安装 Invoke?Invoke 基础1. 运行测试2. 构建文档3.

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

PR曲线——一个更敏感的性能评估工具

在不均衡数据集的情况下,精确率-召回率(Precision-Recall, PR)曲线是一种非常有用的工具,因为它提供了比传统的ROC曲线更准确的性能评估。以下是PR曲线在不均衡数据情况下的一些作用: 关注少数类:在不均衡数据集中,少数类的样本数量远少于多数类。PR曲线通过关注少数类(通常是正类)的性能来弥补这一点,因为它直接评估模型在识别正类方面的能力。 精确率与召回率的平衡:精确率(Pr

FreeRTOS学习笔记(二)任务基础篇

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、 任务的基本内容1.1 任务的基本特点1.2 任务的状态1.3 任务控制块——任务的“身份证” 二、 任务的实现2.1 定义任务函数2.2 创建任务2.3 启动任务调度器2.4 任务的运行与切换2.4.1 利用延时函数2.4.2 利用中断 2.5 任务的通信与同步2.6 任务的删除2.7 任务的通知2

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密