基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真

2024-03-27 06:44

本文主要是介绍基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1 蚂蚁移动和信息素更新

4.2 整体优化过程

5.完整程序


1.程序功能描述

       基于ACO蚁群优化法的UAV最优巡检路线规划。蚁群优化算法源于对自然界蚂蚁寻找食物路径行为的模拟。在无人机巡检路线规划问题中,无人机被认为是“蚂蚁”,巡检点视为“食物源”,目标是找到一条总距离(或总能耗、总时间等)最短的巡检路线。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

............................................................................L=zeros(Pop,1);for i=1:PopR=Tabu(i,:);for j=1:(n-1)% 计算路径长度L(i)=L(i)+D(R(j),R(j+1)); end% 回到起始城市的路径长度L(i)=L(i)+D(R(1),R(n)); end% 更新最短路径和最短路径长度L_best(ij)=min(L);pos=find(L==L_best(ij));R_best(ij,:)=Tabu(pos(1),:); % 更新平均路径长度L_ave(ij)=mean(L);ij=ij+1; % 更新迭代次数% 更新信息素Delta_Tau=zeros(n,n);for i=1:Popfor j=1:(n-1)% 根据路径长度更新信息素Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);end% 起始城市和结束城市间的信息素更新Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);endTau=(1-Rho).*Tau+Delta_Tau; % 信息素挥发并添加新的信息素Tabu=zeros(Pop,n); % 清空禁忌表以开始新的迭代
end
% 输出结果
Pos=find(L_best==min(L_best)); 
Shortest_Route=R_best(Pos(1),:); % 最短路径
Shortest_Length=L_best(Pos(1)); % 最短路径长度
36

4.本算法原理

        蚁群优化算法源于对自然界蚂蚁寻找食物路径行为的模拟。在无人机巡检路线规划问题中,无人机被认为是“蚂蚁”,巡检点视为“食物源”,目标是找到一条总距离(或总能耗、总时间等)最短的巡检路线。

4.1 蚂蚁移动和信息素更新

       蚂蚁移动规则: 蚂蚁在每一步决策时,都会依据当前位置i 和可达的相邻位置 j 之间的pheromone(信息素)浓度τij​ 和启发式信息 ηij​ 来决定前往哪个位置。

      信息素更新: 每一轮搜索结束后,信息素会在路径上进行蒸发和沉积。信息素的更新公式通常如下:

4.2 整体优化过程

初始化:设置信息素矩阵τij​ ,初始化蚂蚁群体,设置参数 α,β,ρ,Q 等。

重复迭代:
每只蚂蚁根据当前信息素分布选择路径,完成一轮巡检路线。
计算每只蚂蚁找到的路径长度,选取其中最短路径进行信息素沉积。
所有路径上的信息素进行挥发。

终止条件:达到预设的最大迭代次数,或连续若干次迭代中最优路径不再改善。

       在无人机巡检场景中,每个巡检点可以视为图中的一个节点,节点间的连边代表无人机可以从一个点飞往另一个点的可行性,连边的权重可以是飞行距离、时间消耗或能量消耗。通过不断迭代优化,ACO算法最终能找到一个全局优化的无人机巡检路线。

5.完整程序

VVV

这篇关于基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851233

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

使用国内镜像源优化pip install下载的方法步骤

《使用国内镜像源优化pipinstall下载的方法步骤》在Python开发中,pip是一个不可或缺的工具,用于安装和管理Python包,然而,由于默认的PyPI服务器位于国外,国内用户在安装依赖时可... 目录引言1. 为什么需要国内镜像源?2. 常用的国内镜像源3. 临时使用国内镜像源4. 永久配置国内镜