【NLP文章阅读】Zero-Shot Information Extraction via Chatting with ChatGPT

本文主要是介绍【NLP文章阅读】Zero-Shot Information Extraction via Chatting with ChatGPT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【NLP文章阅读】Zero-Shot Information Extraction via Chatting with ChatGPT

  • 1 模型创新
  • 2 前期调研
    • 2.1 难以解决的问题
  • 3 Method
    • 3.1 方法
    • 3.2 数据集
      • 3.2.1 RE
      • 3.2.2 NER
      • 3.2.3 EE
    • 3.3 评价指标
      • 3.3.1 RE
      • 3.3.2 NER
      • 3.3.3 EE
  • 4 效果

转载和使用规则:更多论文解读请关注: NLP_paper,如需转载文章需要为我的github项目star,并声明文章来源

1 模型创新

零样本信息提取(Information Extraction)旨在从未注释的文本中构建IE系统。由于很少涉及人类干预,这是一项具有挑战性的工作。零样本IE具有挑战性但值得一提,它减少了数据标记所需的时间和数据标注的麻烦

我们使用两阶段框架(ChatIE)将零样本IE任务转换为多轮问题解答问题。在三个IE任务上对我们的框架进行了广泛的评估:

  • 实体关系三重提取(entity–relation triple extract,RE)
  • 命名实体识别(name entity-relation,NER)
  • 事件提取(event extraction,EE)

在两种语言的六个数据集上的经验结果表明,ChatIE取得了令人印象深刻的性能。

2 前期调研

2.1 难以解决的问题

包含多个相关元素的结构化数据很难通过一次性预测来提取,尤其是对于RE等一些复杂任务。以前的工作将这些复杂任务分解为不同的部分,并训练几个模块来解决每个部分。

  • 例如,在RE任务中,pipline方法PURE首先识别两个实体,然后预测它们之间的关系。然而,在该模型中,需要通过标记数据进行监督。此外,Li等人将RE视为一个问答过程,首先提取主题,然后根据关系模板提取对象

3 Method

3.1 方法

Zero-shoot任务转换为具有两阶段框架的多回合问答问题。

  • 第一阶段,我们的目标是找出句子中可能存在的相应元素类型。
  • 第二阶段,我们对阶段I中的每个元素类型执行链式信息提取。每个阶段都通过多回合QA过程实现。
    在这里插入图片描述

3.2 数据集

3.2.1 RE

NYT11-HRL:包含12种预定义的关系类型。

DuIE2.0:业界最大的基于模式的中文RE数据集,包含48种预定义的关系类型

3.2.2 NER

conll2003:包含4种实体类型

MSRA:是一个以中文命名的新闻领域实体识别数据集,包含3种实体类型

3.2.3 EE

DuEE1.0:百度发布的一个中文事件提取数据集,包含65种事件类型。

ACE053语料库提供了来自新闻专线和在线论坛等多个领域的文档和句子级别的事件注释。

3.3 评价指标

3.3.1 RE

我们报告了标准的微观F1测量,并采用了两个评估指标:

1)边界值(BE):如果主体和对象以及关系的整个实体跨度都是正确的,则提取的关系三元组(主体、关系、对象)被认为是正确的。

2) 严格评估(SE):除了订单评估中需要的内容外,主体和客体的类型也必须正确。我们在NYT11-HRL上使用be,因为没有实体类型的注释,而在DuIE2.0上使用SE

3.3.2 NER

只考虑完全匹配,并使用微观F1来评估NER任务。只有当预测实体和真实实体的边界和类型相同时,我们才会将其视为正确的预测

3.3.3 EE

我们在DuEE1.0数据集和ACE05数据集上采用了不同的评估指标。对于DuEE1.0数据集,根据单词水平匹配对F-measure( F 1 4 F1^4 F14)进行评分。对于ACE05数据集,预测的自变量结果与实体级别的手动标记自变量结果相匹配,并由micro F1进行评估

TP: Ture Positive 把正的判断为正的数目。
FN: False Negative 把正的错判为负的数目。
FP: False Positive 把负的错判为正的数目。
TN: True Negative 把负的判为负的数目。

P(Precision)查准率,精确率:精确率就是算正样本中有多少是正确的。(简单来说是你预测为正的样本中有多少是正确的) 公式:P=TP/(TP+FP)

R(Recall)查全率,召回率:召回率是所有的正样本中有多少被预测正确了公式:R=TP/(TP+FN)

P , R是一对矛盾的度量,一般一个的值高了,另一个的值就会降低,

F1就是综合P,R公式:F1=2PR/(R+P)

4 效果

  • 在六个广泛使用的IE数据集上,ChatIE通常平均提高18.98%的性能。值得注意的是,与少镜头方法相比,这种提高变得更加显著。
  • 监督学习模型计算密集,需要高质量的标记数据。此外,对于每项任务,都会从头开始训练一个单独的模型。相比之下,ChatIE在没有任何微调和训练来更新参数的情况下工作。它大大减少了计算和时间投入。

这篇关于【NLP文章阅读】Zero-Shot Information Extraction via Chatting with ChatGPT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/liuyiming2019/article/details/129995245
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/850294

相关文章

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20