简述最小二乘法基本概念和拟合方法,给出高次函数的拟合公式,配有有matlab仿真程序

本文主要是介绍简述最小二乘法基本概念和拟合方法,给出高次函数的拟合公式,配有有matlab仿真程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小二乘法是一种常用的曲线拟合算法,尤其对于存在白噪声的数据的拟合尤其有用。本文首先简析最小二乘法的作用,然后再推到高次(以3次为例)多项式的拟合公式,并用MATLAB仿真展示具体的应用示例。

一、最小二乘法的用途

最小二乘法是一种常用的曲线拟合算法,尤其对于存在白噪声的数据的拟合尤其有用。有效估计就是具有最小方差的估计,最小二乘法是一种对于物理量参数的有效估计,这种方法综合考虑所有点的偏差,所评估的参数使得对于所有的测量点方差最小。

二、高次多项式的拟合公式推导

假设需要使用最小二乘法对一个3次函数进行拟合,该函数的真值表达式如下:

y=ax^{3}+bx^{2}+cx+d

在实际应用中,x作为输入,在测量输出y时,往往会引入白噪声V_{x},这样实际在测量数据时表达式变为:

y=ax^{3}+bx^{2}+cx+d+V_{x}

现在给定一组输入值X_{i}=[{x_{1},x_{2},x_{3},..,x_{n}}],会得到含有白噪声的一组测量值Y_{i}=[y_{1},y_{2},y_{3},...],由输入值X_{i}和测量值Y_{i},使用最小二乘法对a,b,c,d四个参数进行估计。

根据最小二乘法的定义,使得

J=\sum_{i=1}^{N}[y_{i}-(ax_{i}^{3}+bx_{i}^{2}+cx_{i}+d))]^{2}为最小。

为此,需要分别对a,b,c,d四个参数求偏导数,并令其为0,即可得到一个线性方程组,如下:

\frac{\partial J}{\partial a}|_{a=\hat{a}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})x_{i}^{3}=0

\frac{\partial J}{\partial b}|_{b=\hat{b}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})x_{i}^{2}=0

\frac{\partial J}{\partial c}|_{c=\hat{c}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})x_{i}=0

\frac{\partial J}{\partial d}|_{d=\hat{d}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})=0

对以上四个线性方程整理可得:

\hat{a}\sum_{i=1}^{N}x_{i}^{6}+\hat{b}\sum_{i=1}^{N}x_{i}^{5}+\hat{c}\sum_{i=1}^{N}x_{i}^{4}+\hat{d}\sum_{i=1}^{N}x_{i}^{3}=\sum_{i=1}^{N}y_{i}x_{i}^{3}

\hat{a}\sum_{i=1}^{N}x_{i}^{5}+\hat{b}\sum_{i=1}^{N}x_{i}^{4}+\hat{c}\sum_{i=1}^{N}x_{i}^{3}+\hat{d}\sum_{i=1}^{N}x_{i}^{2}=\sum_{i=1}^{N}y_{i}x_{i}^{2}

\hat{a}\sum_{i=1}^{N}x_{i}^{4}+\hat{b}\sum_{i=1}^{N}x_{i}^{3}+\hat{c}\sum_{i=1}^{N}x_{i}^{2}+\hat{d}\sum_{i=1}^{N}x_{i}=\sum_{i=1}^{N}y_{i}x_{i}

\hat{a}\sum_{i=1}^{N}x_{i}^{3}+\hat{b}\sum_{i=1}^{N}x_{i}^{2}+\hat{c}\sum_{i=1}^{N}x+\hat{d}N=\sum_{i=1}^{N}y_{i}

写成矩阵的形式可得:

\begin{bmatrix} \sum_{i=1}^{N}x_{i}^{6} & \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3}\\ \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2}\\ \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i}\\ \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i} & N \end{bmatrix}\begin{bmatrix} \hat{a}\\ \hat{b}\\ \hat{c}\\ \hat{d} \end{bmatrix}=\begin{bmatrix} \sum_{i=1}^{N}y_{i}x_{i}^{3}\\ \sum_{i=1}^{N}y_{i}x_{i}^{2}\\ \sum_{i=1}^{N}y_{i}x_{i}\\ \sum_{i=1}^{N}y_{i} \end{bmatrix}

A=\begin{bmatrix} \sum_{i=1}^{N}x_{i}^{6} & \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3}\\ \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2}\\ \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i}\\ \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i} & N \end{bmatrix},B=\begin{bmatrix} \hat{a}\\ \hat{b}\\ \hat{c}\\ \hat{d} \end{bmatrix},C=\begin{bmatrix} \sum_{i=1}^{N}y_{i}x_{i}^{3}\\ \sum_{i=1}^{N}y_{i}x_{i}^{2}\\ \sum_{i=1}^{N}y_{i}x_{i}\\ \sum_{i=1}^{N}y_{i} \end{bmatrix}

可简化写成,A*B=C,于是可得估计参数如下:

B=A^{-1}*C

三、Matlab代码仿真

根据上面推导的公式,对一个3次函数进行参数辨识,以证明该公式的有效性。

需要辨识的三次函数如下:

y=0.5x^3+1.2x^2+2x+5

辨识时对该三次函数加入10*[-0.5,0.5]范围的白噪声。matlab代码实现如下:

clc
clear
close all
X_6_sum=0;X_5_sum=0;X_4_sum=0;X_3_sum=0;X_2_sum=0;X_1_sum=0;
RX_3_sum=0;RX_2_sum=0;RX_1_sum=0;
R_sum=0;N=0;
X=-10:0.01:10;
Y=X;
for count=1:length(X)Y(count)=0.5*X(count)^3+1.2*X(count)^2+2*X(count)+5+10*(rand()-0.5);X_6_sum=X_6_sum+X(count)^6;X_5_sum=X_5_sum+X(count)^5;X_4_sum=X_4_sum+X(count)^4;X_3_sum=X_3_sum+X(count)^3;X_2_sum=X_2_sum+X(count)^2;X_1_sum=X_1_sum+X(count);N=length(X);RX_3_sum=RX_3_sum+Y(count)*X(count)^3;RX_2_sum=RX_2_sum+Y(count)*X(count)^2;RX_1_sum=RX_1_sum+Y(count)*X(count);R_sum=R_sum+Y(count);   
end
plot(X,Y,'b.','MarkerSize',10);
A=[X_6_sum,X_5_sum,X_4_sum,X_3_sum;X_5_sum,X_4_sum,X_3_sum,X_2_sum;X_4_sum,X_3_sum,X_2_sum,X_1_sum;X_3_sum,X_2_sum,X_1_sum,N];
C=[RX_3_sum;RX_2_sum;RX_1_sum;R_sum];
B=inv(A)*C
B1=polyfit(X,Y,3)
Y1=B(1).*X.^3+B(2).*X.^2+B(3).*X+B(4);
hold on
plot(X,Y1,'r','MarkerSize',10);

仿真结果如下:

 其中B为采用上述公式得到的拟合结果,B1为采用matlab自带的函数进行的拟合得到的结果,两者对比可证明结果是一致的,并且和设定的真实参数相差很小,从而证明该公式的正确性。

这篇关于简述最小二乘法基本概念和拟合方法,给出高次函数的拟合公式,配有有matlab仿真程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/838813

相关文章

检查 Nginx 是否启动的几种方法

《检查Nginx是否启动的几种方法》本文主要介绍了检查Nginx是否启动的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1. 使用 systemctl 命令(推荐)2. 使用 service 命令3. 检查进程是否存在4

Java方法重载与重写之同名方法的双面魔法(最新整理)

《Java方法重载与重写之同名方法的双面魔法(最新整理)》文章介绍了Java中的方法重载Overloading和方法重写Overriding的区别联系,方法重载是指在同一个类中,允许存在多个方法名相同... 目录Java方法重载与重写:同名方法的双面魔法方法重载(Overloading):同门师兄弟的不同绝

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

springboot中配置logback-spring.xml的方法

《springboot中配置logback-spring.xml的方法》文章介绍了如何在SpringBoot项目中配置logback-spring.xml文件来进行日志管理,包括如何定义日志输出方式、... 目录一、在src/main/resources目录下,也就是在classpath路径下创建logba

SQL Server中行转列方法详细讲解

《SQLServer中行转列方法详细讲解》SQL行转列、列转行可以帮助我们更方便地处理数据,生成需要的报表和结果集,:本文主要介绍SQLServer中行转列方法的相关资料,需要的朋友可以参考下... 目录前言一、为什么需要行转列二、行转列的基本概念三、使用PIVOT运算符进行行转列1.创建示例数据表并插入数

C++打印 vector的几种方法小结

《C++打印vector的几种方法小结》本文介绍了C++中遍历vector的几种方法,包括使用迭代器、auto关键字、typedef、计数器以及C++11引入的范围基础循环,具有一定的参考价值,感兴... 目录1. 使用迭代器2. 使用 auto (C++11) / typedef / type alias

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步

C# GC回收的方法实现

《C#GC回收的方法实现》本文主要介绍了C#GC回收的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、什么是 GC? 二、GC 管理的是哪部分内存? 三、GC 什么时候触发?️ 四、GC 如何判断一个对象是“垃圾