简述最小二乘法基本概念和拟合方法,给出高次函数的拟合公式,配有有matlab仿真程序

本文主要是介绍简述最小二乘法基本概念和拟合方法,给出高次函数的拟合公式,配有有matlab仿真程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小二乘法是一种常用的曲线拟合算法,尤其对于存在白噪声的数据的拟合尤其有用。本文首先简析最小二乘法的作用,然后再推到高次(以3次为例)多项式的拟合公式,并用MATLAB仿真展示具体的应用示例。

一、最小二乘法的用途

最小二乘法是一种常用的曲线拟合算法,尤其对于存在白噪声的数据的拟合尤其有用。有效估计就是具有最小方差的估计,最小二乘法是一种对于物理量参数的有效估计,这种方法综合考虑所有点的偏差,所评估的参数使得对于所有的测量点方差最小。

二、高次多项式的拟合公式推导

假设需要使用最小二乘法对一个3次函数进行拟合,该函数的真值表达式如下:

y=ax^{3}+bx^{2}+cx+d

在实际应用中,x作为输入,在测量输出y时,往往会引入白噪声V_{x},这样实际在测量数据时表达式变为:

y=ax^{3}+bx^{2}+cx+d+V_{x}

现在给定一组输入值X_{i}=[{x_{1},x_{2},x_{3},..,x_{n}}],会得到含有白噪声的一组测量值Y_{i}=[y_{1},y_{2},y_{3},...],由输入值X_{i}和测量值Y_{i},使用最小二乘法对a,b,c,d四个参数进行估计。

根据最小二乘法的定义,使得

J=\sum_{i=1}^{N}[y_{i}-(ax_{i}^{3}+bx_{i}^{2}+cx_{i}+d))]^{2}为最小。

为此,需要分别对a,b,c,d四个参数求偏导数,并令其为0,即可得到一个线性方程组,如下:

\frac{\partial J}{\partial a}|_{a=\hat{a}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})x_{i}^{3}=0

\frac{\partial J}{\partial b}|_{b=\hat{b}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})x_{i}^{2}=0

\frac{\partial J}{\partial c}|_{c=\hat{c}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})x_{i}=0

\frac{\partial J}{\partial d}|_{d=\hat{d}}=-2\sum_{i=1}^{N}(y_{i}-\hat{a}x_{i}^{3}-\hat{b}x_{i}^{2}-\hat{c}x_{i}-\hat{d})=0

对以上四个线性方程整理可得:

\hat{a}\sum_{i=1}^{N}x_{i}^{6}+\hat{b}\sum_{i=1}^{N}x_{i}^{5}+\hat{c}\sum_{i=1}^{N}x_{i}^{4}+\hat{d}\sum_{i=1}^{N}x_{i}^{3}=\sum_{i=1}^{N}y_{i}x_{i}^{3}

\hat{a}\sum_{i=1}^{N}x_{i}^{5}+\hat{b}\sum_{i=1}^{N}x_{i}^{4}+\hat{c}\sum_{i=1}^{N}x_{i}^{3}+\hat{d}\sum_{i=1}^{N}x_{i}^{2}=\sum_{i=1}^{N}y_{i}x_{i}^{2}

\hat{a}\sum_{i=1}^{N}x_{i}^{4}+\hat{b}\sum_{i=1}^{N}x_{i}^{3}+\hat{c}\sum_{i=1}^{N}x_{i}^{2}+\hat{d}\sum_{i=1}^{N}x_{i}=\sum_{i=1}^{N}y_{i}x_{i}

\hat{a}\sum_{i=1}^{N}x_{i}^{3}+\hat{b}\sum_{i=1}^{N}x_{i}^{2}+\hat{c}\sum_{i=1}^{N}x+\hat{d}N=\sum_{i=1}^{N}y_{i}

写成矩阵的形式可得:

\begin{bmatrix} \sum_{i=1}^{N}x_{i}^{6} & \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3}\\ \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2}\\ \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i}\\ \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i} & N \end{bmatrix}\begin{bmatrix} \hat{a}\\ \hat{b}\\ \hat{c}\\ \hat{d} \end{bmatrix}=\begin{bmatrix} \sum_{i=1}^{N}y_{i}x_{i}^{3}\\ \sum_{i=1}^{N}y_{i}x_{i}^{2}\\ \sum_{i=1}^{N}y_{i}x_{i}\\ \sum_{i=1}^{N}y_{i} \end{bmatrix}

A=\begin{bmatrix} \sum_{i=1}^{N}x_{i}^{6} & \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3}\\ \sum_{i=1}^{N}x_{i}^{5} & \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2}\\ \sum_{i=1}^{N}x_{i}^{4} & \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i}\\ \sum_{i=1}^{N}x_{i}^{3} & \sum_{i=1}^{N}x_{i}^{2} & \sum_{i=1}^{N}x_{i} & N \end{bmatrix},B=\begin{bmatrix} \hat{a}\\ \hat{b}\\ \hat{c}\\ \hat{d} \end{bmatrix},C=\begin{bmatrix} \sum_{i=1}^{N}y_{i}x_{i}^{3}\\ \sum_{i=1}^{N}y_{i}x_{i}^{2}\\ \sum_{i=1}^{N}y_{i}x_{i}\\ \sum_{i=1}^{N}y_{i} \end{bmatrix}

可简化写成,A*B=C,于是可得估计参数如下:

B=A^{-1}*C

三、Matlab代码仿真

根据上面推导的公式,对一个3次函数进行参数辨识,以证明该公式的有效性。

需要辨识的三次函数如下:

y=0.5x^3+1.2x^2+2x+5

辨识时对该三次函数加入10*[-0.5,0.5]范围的白噪声。matlab代码实现如下:

clc
clear
close all
X_6_sum=0;X_5_sum=0;X_4_sum=0;X_3_sum=0;X_2_sum=0;X_1_sum=0;
RX_3_sum=0;RX_2_sum=0;RX_1_sum=0;
R_sum=0;N=0;
X=-10:0.01:10;
Y=X;
for count=1:length(X)Y(count)=0.5*X(count)^3+1.2*X(count)^2+2*X(count)+5+10*(rand()-0.5);X_6_sum=X_6_sum+X(count)^6;X_5_sum=X_5_sum+X(count)^5;X_4_sum=X_4_sum+X(count)^4;X_3_sum=X_3_sum+X(count)^3;X_2_sum=X_2_sum+X(count)^2;X_1_sum=X_1_sum+X(count);N=length(X);RX_3_sum=RX_3_sum+Y(count)*X(count)^3;RX_2_sum=RX_2_sum+Y(count)*X(count)^2;RX_1_sum=RX_1_sum+Y(count)*X(count);R_sum=R_sum+Y(count);   
end
plot(X,Y,'b.','MarkerSize',10);
A=[X_6_sum,X_5_sum,X_4_sum,X_3_sum;X_5_sum,X_4_sum,X_3_sum,X_2_sum;X_4_sum,X_3_sum,X_2_sum,X_1_sum;X_3_sum,X_2_sum,X_1_sum,N];
C=[RX_3_sum;RX_2_sum;RX_1_sum;R_sum];
B=inv(A)*C
B1=polyfit(X,Y,3)
Y1=B(1).*X.^3+B(2).*X.^2+B(3).*X+B(4);
hold on
plot(X,Y1,'r','MarkerSize',10);

仿真结果如下:

 其中B为采用上述公式得到的拟合结果,B1为采用matlab自带的函数进行的拟合得到的结果,两者对比可证明结果是一致的,并且和设定的真实参数相差很小,从而证明该公式的正确性。

这篇关于简述最小二乘法基本概念和拟合方法,给出高次函数的拟合公式,配有有matlab仿真程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/838813

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T