从语音识别看AI:我们距离真正的人工智能还有多远?

2024-03-23 02:08

本文主要是介绍从语音识别看AI:我们距离真正的人工智能还有多远?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自1962年IBM推出第一台语音识别机器以来,语音识别科学已经走了很长一段路。这已经不是什么秘密了。随着技术的发展,语音识别已越来越多地渗透到我们的日常生活中,这些语音驱动应用程序包括Amazon的Alexa, 苹果的Siri,微软的Cortana或Google的许多语音响应功能。 从我们的电话,计算机,手表甚至冰箱中,我们带入生活中的每一个新的语音交互设备都会加深我们对人工智能(AI)和机器学习的依赖。

人工智能与机器学习

人工智能由约翰·麦卡锡(John McCarthy)于1956年首次提出,可以定义为“机器展示的人类智能”。 在最初用于分析和快速计算数据的地方,人工智能现在允许计算机执行通常只有人类才能执行的任务。

机器学习是人工智能的子集,是指可以自行学习的系统。 它涉及教导计算机识别模式,而不是使用特定规则对其进行编程。 训练过程包括将大量数据提供给算法,并使其从该数据中学习并识别模式。 在早期,程序员必须为他们想识别的每个对象(例如人与狗)编写代码; 现在,一个系统可以通过向每个系统展示许多示例来识别两者。 随着时间的推移,这些系统将不断变得更加智能,而无需人工干预。

机器学习有许多不同的技术和方法。 这些方法之一是人工神经网络,其中一个例子是产品推荐。 电子商务公司通常使用人工神经网络展示用户更有可能购买的产品。 他们可以通过从所有用户的浏览体验中提取数据并利用这些信息提出有效的产品推荐来做到这一点。

今天,人工智能的其他一些常见应用是对象识别,翻译,语音识别和自然语言处理。 Rev的自动转录由自动语音识别(ASR)和自然语言处理(NLP)驱动。 ASR是将口语单词转换为文本,而NLP是对文本进行处理以得出其含义。 由于人类经常以口语,缩写和首字母缩写讲话,因此需要对自然语言进行大量的计算机分析才能产生准确的转录。

语音识别技术面临的挑战

语音识别技术面临的挑战众多,但范围正在缩小。 其中包括克服不良的录音设备,背景噪音,难以理解的口音和方言,以及人们各种声音的变化。

教机器学习人类读口语的能力尚未达到完美。 聆听和理解一个人说的话远不止是听到一个人说的话。 作为人类,我们还通过人的眼睛,面部表情,肢体语言以及语音中的语调和语调,解读话语的含义。 语音的另一个细微差别是人类倾向于缩短某些短语(例如“我不知道”变成“不知道”)。 这种人为的倾向对语音识别中的机器学习提出了另一个挑战。

机器正在学习“侦听”口音,情绪和曲率,但是还有很长的路要走。 随着技术变得越来越复杂,特定算法使用了更多数据,这些挑战正在迅速被克服。

随着人工智能的发展以及可以轻松挖掘用于机器学习目的的大量语音数据,如果它成为下一个主要交互界面也不足为奇了。

钛灵AIX是一款集计算机视觉与智能语音交互两大核心功能为一体的人工智能硬件,搭载 Intel 专业级 AI 加速运算芯片与多种传感技术,是全方位体验和学习新互联网、物联网、人工智能技术的"超级智慧大脑"。钛灵 AIX可以帮助越来越多AI爱好者、开发者,甚至在校学生群体,降低人工智能的学习与研发成本,加速AI应用的开发。

化繁为简,简单3步,只需5分钟,就能快速开发一个AI应用。钛灵AIX,让AI易用易开发。开源开放,get更多有趣新技能!

这篇关于从语音识别看AI:我们距离真正的人工智能还有多远?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/836805

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/