nyist 468 Fibonacci数列(六)(Miller-Rabin算法 大数素性测试)

2024-03-20 13:48

本文主要是介绍nyist 468 Fibonacci数列(六)(Miller-Rabin算法 大数素性测试),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


Fibonacci数列(六)

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 3
描述 大家都知道都知道素数的定义:大于1且只有1和其本身外没有其它因子的正整数。对应的我们可以这样定义"Fibonacci素数":在Fibonacci数列中大于1且与小于它的Fibonacci数都互质的数。判断Fibonacci数列的第n项是否为"Fibonacci素数"。其中F 1=F 2=1,F n=F n-1+F n-2  (n>2)。
输入 多组测试数据,不超过100组。 每行有一个整数n(0<n<10^18)。

输出 如果Fn为" Fibonacci素数"输出Yes,否则输出No,每个结果占一行。
样例输入 2 3
4

样例输出 No
Yes
Yes

题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=468


题目分析:根据定理gcd(Fib[i], Fib[j]) = Fib[gcd(i, j)]可知只要n为素数,则Fib[n]是Fibonacci素数,注意4是一个特例,直接贴kuangbin巨巨的板子了

#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
int const S = 20;   //随机算法判定次数,S越大,判错概率越小long long mult_mod(long long a,long long b,long long c)
{a%=c;b%=c;long long ret=0;while(b){if(b&1){ret+=a;ret%=c;}a<<=1;if(a>=c)a%=c;b>>=1;}return ret;
}long long pow_mod(long long x,long long n,long long mod)
{if(n==1)return x%mod;x%=mod;long long tmp=x;long long ret=1;while(n){if(n&1) ret=mult_mod(ret,tmp,mod);tmp=mult_mod(tmp,tmp,mod);n>>=1;}return ret;
}bool check(long long a,long long n,long long x,long long t)
{long long ret=pow_mod(a,x,n);long long last=ret;for(int i=1;i<=t;i++){ret=mult_mod(ret,ret,n);if(ret==1&&last!=1&&last!=n-1) return true;last=ret;}if(ret!=1) return true;return false;
}bool Miller_Rabin(long long n)
{if(n<2)return false;if(n==2)return true;if((n&1)==0) return false;long long x=n-1;long long t=0;while((x&1)==0){x>>=1;t++;}for(int i=0;i<S;i++){long long a=rand()%(n-1)+1;if(check(a,n,x,t))return false;}return true;
}int main()
{ll n;while(scanf("%lld",&n)!=EOF){if(n == 1 || n == 2){printf("No\n");continue;}if(Miller_Rabin(n) || n == 4)printf("Yes\n");else printf("No\n");}
}


这篇关于nyist 468 Fibonacci数列(六)(Miller-Rabin算法 大数素性测试)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829630

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时