sgd Momentum Vanilla SGD RMSprop adam等优化算法在寻找 简单logistic分类中的 的应用

本文主要是介绍sgd Momentum Vanilla SGD RMSprop adam等优化算法在寻找 简单logistic分类中的 的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考博文





​​​​​​(4条消息) sgd Momentum Vanilla SGD RMSprop adam等优化算法在寻找函数最值的应用_tcuuuqladvvmm454的博客-CSDN博客

在这里随机选择一些数据 生成两类

 

 

 

 

核心代码如下:
    def __init__(self, loss, weights, lr=2.1, beta1=0.9, beta2=0.999, epislon=1e-8):# , t1=[], g1=[], lr1=[], m1=[], v1=[], theta1=[]):
        self.loss = loss
        self.theta = weights
        self.lr = lr
        self.beta1 = beta1
        self.beta2 = beta2
        self.epislon = epislon
        self.get_gradient = grad(loss)
        self.m = 0
        self.v = 0
        self.t = 0
        #t1=[], g1=[], lr1=[], m1=[], v1=[], theta1=[]
        #self.t1, g1, lr1, self.m1, self.v1, self.theta1=[],[],[],[],[],[]

    def minimize_raw(self, epochs=EPOCHS):##sgd
        ee=[]
        #print('sgd------------')
        for _ in range(epochs):
            self.t += 1
            #print('adma------------')
            g = self.get_gradient(self.theta)
            self.m = self.beta1 * self.m + (1 - self.beta1) * g
            self.v = self.beta2 * self.v + (1 - self.beta2) * (g * g)
            self.m_cat = self.m / (1 - self.beta1 ** self.t)
            self.v_cat = self.v / (1 - self.beta2 ** self.t)
            self.theta -= self.lr * self.m_cat / (self.v_cat ** 0.5 + self.epislon)
            final_loss = self.loss(self.theta)
            ee.append(final_loss)
        plt.figure()
        plt.plot(ee)
        plt.show()
        print("adam_final loss:{} weights0:{}".format(final_loss, self.theta[0]))
    def minimize_raw1(self, epochs=EPOCHS):##sgd
        ee=[]
        #print('sgd------------')
        for _ in range(epochs):
            self.t += 1
            g = self.get_gradient(self.theta)
            self.m = self.beta1 * self.m + (1 - self.beta1) * g
            self.v = self.beta2 * self.v + (1 - self.beta2) * (g * g)
            self.m_cat = self.m / (1 - self.beta1 ** self.t)
            self.v_cat = self.v / (1 - self.beta2 ** self.t)
            self.theta -= self.lr * g#self.m_cat / (self.v_cat ** 0.5 + self.epislon)
            final_loss = self.loss(self.theta)
            ee.append(final_loss)
        plt.figure()
        plt.plot(ee)
        plt.show()
        print("sgd_final loss:{} weights0:{}".format(final_loss, self.theta[0]))

    def minimize(self, epochs=EPOCHS):
        ee=[]
        for _ in range(epochs):
            
            self.t += 1
            g = self.get_gradient(self.theta)
            lr = self.lr * (1 - self.beta2 ** self.t) ** 0.5 / (1 - self.beta1 ** self.t)
            self.m = self.beta1 * self.m + (1 - self.beta1) * g
            self.v = self.beta2 * self.v + (1 - self.beta2) * (g * g)
            self.theta -= lr * self.m / (self.v ** 0.5 + self.epislon)
            final_loss = self.loss(self.theta)
            ee.append(final_loss)
        plt.figure()
        plt.plot(ee)
        plt.show()
        print("romsrop_final loss:{} weights0:{}".format(final_loss, self.theta[0]))
    def minimize2(self, epochs=EPOCHS):
        ee=[]
        for _ in range(epochs):
            self.t += 1
            g = self.get_gradient(self.theta)
            lr = self.lr * (1 - self.beta2 ** self.t) ** 0.5 / (1 - self.beta1 ** self.t)
            self.m = self.beta1 * self.m + lr * g
            #self.v = self.beta2 * self.v + (1 - self.beta2) * (g * g)
            self.theta -= self.m# / (self.v ** 0.5 + self.epislon)
            final_loss = self.loss(self.theta)
            ee.append(final_loss)
        plt.figure()
        plt.plot(ee)
        plt.show()
        print("dongliang_final loss:{} weights0:{}".format(final_loss, self.theta[0]))
        

    #t1, g1, lr1, m1, v1, theta1=[],[],[],[],[],[]
    def minimize_show(self, epochs=EPOCHS):
        lr1=[0.1,0.3,0.0001]
        for uu in range(3):
            for _ in range(epochs):
                self.t += 1
                lr=lr1[uu]
                g = self.get_gradient(self.theta)
                lr = self.lr * (1 - self.beta2 ** self.t) ** 0.5 / (1 - self.beta1 ** self.t)
                self.m = self.beta1 * self.m + (1 - self.beta1) * g
                self.v = self.beta2 * self.v + (1 - self.beta2) * (g * g)
                self.theta -= lr * self.m / (self.v ** 0.5 + self.epislon)
                #print("step{: 4d} g:{} lr:{} m:{} v:{} theta:{}".format(self.t, g, lr, self.m, self.v, self.theta))
                #t1.append(self.t) 
                #g1.append(g),
                #l.r1append(l.r) 
                #m1.append(self.m)
                #v1.append(self.v) 
                #theta1.append(self.theta)#=[],[],[],[],[],[]
            #return self.t1, g1, lr1, self.m1, self.v1, self.theta1

            final_loss = self.loss(self.theta)
        print("final loss:{} weights:{}".format(final_loss, self.theta))


def sigmoid(x):
    
    
    return 1/(np.exp(-x) + 1)#0.5*(np.tanh(x) + 1)

def plot_sigmoid_dao( ):
    x=np.arange(-8,8,0.1)
    y=sigmoid(x)*(1-sigmoid(x))
    y1=sigmoid(x)#*(1-sigmoid(x))
    p1=plt.plot(x,y,label='sigmod1 ')
    p2=plt.plot(x,y1,label='sigmod')
    plt.legend( )#[p2, p1], ["yuanshi2", "daosgu 1"], loc='upper left')
    plt.show()
    
    #plt.legend('daoshu','yuanshi')
plot_sigmoid_dao()  
    
def logistic_predictions(weights, inputs):
    # Outputs probability of a label being true according to logistic model.
    return sigmoid(np.dot(inputs, weights))

def training_loss1(weights):
    rr=[]
    # Training loss is the negative log-likelihood of the training labels.
    preds = logistic_predictions(weights, inputs)
    rr.append((preds))
    #print(rr)
    label_probabilities = (preds - targets)**2#preds * targets + (1 - preds) * (1 - targets)
   
    #return -np.sum(np.log(label_probabilities))
    return np.sum((label_probabilities))/preds.shape[0]

def training_loss(weights):
    rr=[]
    s1=np.dot(inputs, weights)
    s2=sigmoid(s1)
    #print('s2=',s2)
    # Training loss is the negative log-likelihood of the training labels.
    preds = s2#logistic_predictions(weights, inputs)
    rr.append((preds))
    #print(preds ,targets)
    ee=[]
    for i in range(preds.shape[0]):
        ee.append((preds[i]-targets[i])**2)
    ee1=sum(ee)
        
    #label_probabilities = (preds - targets)**2#preds * targets + (1 - preds) * (1 - targets)
    #print(label_probabilities)
    #return -np.sum(np.log(label_probabilities))
    return ee1#np.sum((label_probabilities))

这篇关于sgd Momentum Vanilla SGD RMSprop adam等优化算法在寻找 简单logistic分类中的 的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828817

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1