转载的 损失函数MSE L1 优化函数ADAM SGD 优化算法等

2024-03-20 08:08

本文主要是介绍转载的 损失函数MSE L1 优化函数ADAM SGD 优化算法等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如有侵权,请联系删除!

pytorch框架中损失函数与优化器介绍:

目录

1. 损失函数:

1.1 nn.L1Loss

1.2 nn.SmoothL1Loss

1.3 nn.MSELoss

1.4 nn.BCELoss

1.5 nn.CrossEntropyLoss

1.6 nn.NLLLoss

1.7 nn.NLLLoss2d

2.优化器Optim

2.1 使用

2.2 基类 Optimizer

2.3 方法

3. 优化算法

3.1 随机梯度下降算法 SGD算法

3-2 平均随机梯度下降算法 ASGD算法

3-3 Adagrad算法

3-4 自适应学习率调整 Adadelta算法

3-5 RMSprop算法

3-6 自适应矩估计 Adam算法

3-7 Adamax算法(Adamd的无穷范数变种)

3-8 SparseAdam算法

3-9 L-BFGS算法

3-10 弹性反向传播算法 Rprop算法

1.1 nn.L1Loss的主要形式 

1.2 nn.SmoothL1Loss

1.3 nn.MSELoss

1.4 nn.BCELoss

1.5 nn.CrossEntropyLoss

1.6 nn.NLLLoss

1.7 nn.NLLLoss2d

这些参数都比较的经典,需要认真的学习

根据主要梯度下降的方向进行优化,

比如爬山,如果找到最低点,那么肯定朝着最陡峭(梯度最大)的反方向去下坡,会最快的走到最低点

那么沿着梯度反方向,随机更新一下梯度,然后可以找到一个最值,进而慢慢的找到最值

处理随机更新梯度,还有很多的方法 比如随机小批量  小批量等等

图 一个求解过程

 

提取找寻的过程

 

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
%matplotlib inline
#  二元一次函数图像
fig = plt.figure()
ax = Axes3D(fig)
x = np.arange(-10, 10, 1)
y = np.arange(-10, 10, 1)
X, Y = np.meshgrid(x, y)  # 网格的创建,生成二维数组,这个是关键
Z = (1 - X) ** 2 + 100 * (Y - X ** 2) ** 2
Z=Z
plt.xlabel('x')
plt.ylabel('y')
# 将函数显示为3d,rstride和cstride代表row(行)和column(列)的跨度cmap为色图分类
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
plt.show()

    
    
def cal_rosenbrock(x1, x2):
    """
    计算rosenbrock函数的值
    :param x1:
    :param x2:
    :return:
    """
    return (1 - x1) ** 2 + 100 * (x2 - x1 ** 2) ** 2+3


def cal_rosenbrock_prax(x1, x2):
    """
    对x1求偏导
    """
    return -2 + 2 * x1 - 400 * (x2 - x1 ** 2) * x1

def cal_rosenbrock_pray(x1, x2):
    """
    对x2求偏导
    """
    return 200 * (x2 - x1 ** 2)

def for_rosenbrock_func(max_iter_count=100000, step_size=0.001):
    pre_x = [1.5,1.5]#np.zeros((2,), dtype=np.float32)
    loss = 10
    iter_count = 0
    x1=[]
    y1=[]
    z1=[]
    while loss > 0.0001 and iter_count < max_iter_count:
        error = np.zeros((2,), dtype=np.float32)
        error[0] = cal_rosenbrock_prax(pre_x[0], pre_x[1])
        error[1] = cal_rosenbrock_pray(pre_x[0], pre_x[1])

        for j in range(2):
            pre_x[j] -= step_size * error[j]
        ww1=cal_rosenbrock(pre_x[0], pre_x[1])
        loss = cal_rosenbrock(pre_x[0], pre_x[1])-3  # 最小值为0
        
        if iter_count%400==0:
            #print("iter_count: ", iter_count, "the loss:", loss, "SHUZHI:", ww1)
            #  二元一次函数图像
            #fig = plt.figure()
            #ax = Axes3D(fig)
            x = np.arange(-10, 10, 1)
            y = np.arange(-10, 10, 1)
            X, Y = np.meshgrid(x, y)  # 网格的创建,生成二维数组,这个是关键
            Z = (1 - X) ** 2 + 100 * (Y - X ** 2) ** 2
            Z=Z
            #plt.xlabel('x')
            #plt.ylabel('y')
            x1.append(pre_x[0])
            y1.append(pre_x[1])
            z1.append(0+loss)
            # 将函数显示为3d,rstride和cstride代表row(行)和column(列)的跨度cmap为色图分类
            #ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
            #ax.scatter(pre_x[0], pre_x[1],loss, c='red',s=250, label='sss')#, c=None, depthshade=True, *args, *kwargs)
            #plt.show()
            #plt.plot(pre_x[0], pre_x[1],loss, s=100)#, label='acc')
        iter_count += 1
        #print(x1,y1,z1)
    print('ok1')
    return pre_x,x1,y1,z1

if __name__ == '__main__':
    %matplotlib inline
    w,x1,y1,z1 = for_rosenbrock_func() 
    
    #print(w,x1,y1,z1)
    fig = plt.figure()
    #ax = Axes3D(fig)
    ax= plt.axes(projection='3d')
    #ax.set_xlim(1, 1.5)  # X轴,横向向右方向
    #ax.set_ylim(1, 1.5)  # Y轴,左向与X,Z轴互为垂直
    #ax.set_zlim(1, 35)  # 竖向为Z轴
    x = np.arange(-10, 10, 1)
    y = np.arange(-10, 10, 1)
    X, Y = np.meshgrid(x, y)  # 网格的创建,生成二维数组,这个是关键
    Z = (1 - X) ** 2 + 100 * (Y - X ** 2) ** 2
    Z=Z
    plt.xlabel('x')
    plt.ylabel('y')

    # 将函数显示为3d,rstride和cstride代表row(行)和column(列)的跨度cmap为色图分类
    ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
    ax.scatter(x1,y1,z1, c='red',s=150)#, c=None, depthshade=True, *args, *kwargs)
    
    #plt.xlim(1, 1.5)
    #plt.ylim(1, 1.5)
    #plt.zlim(1, 31.5)

    plt.show()
    fig = plt.figure()
    ax = Axes3D(fig)
    ax.scatter(x1,y1,z1, c='red',s=150)#, c=None, depthshade=True, *args, *kwargs)
    plt.show()
    #ax.scatter(x1, y1, z1, s=20, c=None, depthshade=True, *args, *kwargs)
    plt.show()

这篇关于转载的 损失函数MSE L1 优化函数ADAM SGD 优化算法等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828815

相关文章

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n