转载的 损失函数MSE L1 优化函数ADAM SGD 优化算法等

2024-03-20 08:08

本文主要是介绍转载的 损失函数MSE L1 优化函数ADAM SGD 优化算法等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如有侵权,请联系删除!

pytorch框架中损失函数与优化器介绍:

目录

1. 损失函数:

1.1 nn.L1Loss

1.2 nn.SmoothL1Loss

1.3 nn.MSELoss

1.4 nn.BCELoss

1.5 nn.CrossEntropyLoss

1.6 nn.NLLLoss

1.7 nn.NLLLoss2d

2.优化器Optim

2.1 使用

2.2 基类 Optimizer

2.3 方法

3. 优化算法

3.1 随机梯度下降算法 SGD算法

3-2 平均随机梯度下降算法 ASGD算法

3-3 Adagrad算法

3-4 自适应学习率调整 Adadelta算法

3-5 RMSprop算法

3-6 自适应矩估计 Adam算法

3-7 Adamax算法(Adamd的无穷范数变种)

3-8 SparseAdam算法

3-9 L-BFGS算法

3-10 弹性反向传播算法 Rprop算法

1.1 nn.L1Loss的主要形式 

1.2 nn.SmoothL1Loss

1.3 nn.MSELoss

1.4 nn.BCELoss

1.5 nn.CrossEntropyLoss

1.6 nn.NLLLoss

1.7 nn.NLLLoss2d

这些参数都比较的经典,需要认真的学习

根据主要梯度下降的方向进行优化,

比如爬山,如果找到最低点,那么肯定朝着最陡峭(梯度最大)的反方向去下坡,会最快的走到最低点

那么沿着梯度反方向,随机更新一下梯度,然后可以找到一个最值,进而慢慢的找到最值

处理随机更新梯度,还有很多的方法 比如随机小批量  小批量等等

图 一个求解过程

 

提取找寻的过程

 

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
%matplotlib inline
#  二元一次函数图像
fig = plt.figure()
ax = Axes3D(fig)
x = np.arange(-10, 10, 1)
y = np.arange(-10, 10, 1)
X, Y = np.meshgrid(x, y)  # 网格的创建,生成二维数组,这个是关键
Z = (1 - X) ** 2 + 100 * (Y - X ** 2) ** 2
Z=Z
plt.xlabel('x')
plt.ylabel('y')
# 将函数显示为3d,rstride和cstride代表row(行)和column(列)的跨度cmap为色图分类
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
plt.show()

    
    
def cal_rosenbrock(x1, x2):
    """
    计算rosenbrock函数的值
    :param x1:
    :param x2:
    :return:
    """
    return (1 - x1) ** 2 + 100 * (x2 - x1 ** 2) ** 2+3


def cal_rosenbrock_prax(x1, x2):
    """
    对x1求偏导
    """
    return -2 + 2 * x1 - 400 * (x2 - x1 ** 2) * x1

def cal_rosenbrock_pray(x1, x2):
    """
    对x2求偏导
    """
    return 200 * (x2 - x1 ** 2)

def for_rosenbrock_func(max_iter_count=100000, step_size=0.001):
    pre_x = [1.5,1.5]#np.zeros((2,), dtype=np.float32)
    loss = 10
    iter_count = 0
    x1=[]
    y1=[]
    z1=[]
    while loss > 0.0001 and iter_count < max_iter_count:
        error = np.zeros((2,), dtype=np.float32)
        error[0] = cal_rosenbrock_prax(pre_x[0], pre_x[1])
        error[1] = cal_rosenbrock_pray(pre_x[0], pre_x[1])

        for j in range(2):
            pre_x[j] -= step_size * error[j]
        ww1=cal_rosenbrock(pre_x[0], pre_x[1])
        loss = cal_rosenbrock(pre_x[0], pre_x[1])-3  # 最小值为0
        
        if iter_count%400==0:
            #print("iter_count: ", iter_count, "the loss:", loss, "SHUZHI:", ww1)
            #  二元一次函数图像
            #fig = plt.figure()
            #ax = Axes3D(fig)
            x = np.arange(-10, 10, 1)
            y = np.arange(-10, 10, 1)
            X, Y = np.meshgrid(x, y)  # 网格的创建,生成二维数组,这个是关键
            Z = (1 - X) ** 2 + 100 * (Y - X ** 2) ** 2
            Z=Z
            #plt.xlabel('x')
            #plt.ylabel('y')
            x1.append(pre_x[0])
            y1.append(pre_x[1])
            z1.append(0+loss)
            # 将函数显示为3d,rstride和cstride代表row(行)和column(列)的跨度cmap为色图分类
            #ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
            #ax.scatter(pre_x[0], pre_x[1],loss, c='red',s=250, label='sss')#, c=None, depthshade=True, *args, *kwargs)
            #plt.show()
            #plt.plot(pre_x[0], pre_x[1],loss, s=100)#, label='acc')
        iter_count += 1
        #print(x1,y1,z1)
    print('ok1')
    return pre_x,x1,y1,z1

if __name__ == '__main__':
    %matplotlib inline
    w,x1,y1,z1 = for_rosenbrock_func() 
    
    #print(w,x1,y1,z1)
    fig = plt.figure()
    #ax = Axes3D(fig)
    ax= plt.axes(projection='3d')
    #ax.set_xlim(1, 1.5)  # X轴,横向向右方向
    #ax.set_ylim(1, 1.5)  # Y轴,左向与X,Z轴互为垂直
    #ax.set_zlim(1, 35)  # 竖向为Z轴
    x = np.arange(-10, 10, 1)
    y = np.arange(-10, 10, 1)
    X, Y = np.meshgrid(x, y)  # 网格的创建,生成二维数组,这个是关键
    Z = (1 - X) ** 2 + 100 * (Y - X ** 2) ** 2
    Z=Z
    plt.xlabel('x')
    plt.ylabel('y')

    # 将函数显示为3d,rstride和cstride代表row(行)和column(列)的跨度cmap为色图分类
    ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
    ax.scatter(x1,y1,z1, c='red',s=150)#, c=None, depthshade=True, *args, *kwargs)
    
    #plt.xlim(1, 1.5)
    #plt.ylim(1, 1.5)
    #plt.zlim(1, 31.5)

    plt.show()
    fig = plt.figure()
    ax = Axes3D(fig)
    ax.scatter(x1,y1,z1, c='red',s=150)#, c=None, depthshade=True, *args, *kwargs)
    plt.show()
    #ax.scatter(x1, y1, z1, s=20, c=None, depthshade=True, *args, *kwargs)
    plt.show()

这篇关于转载的 损失函数MSE L1 优化函数ADAM SGD 优化算法等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828815

相关文章

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字