转载的 损失函数MSE L1 优化函数ADAM SGD 优化算法等

2024-03-20 08:08

本文主要是介绍转载的 损失函数MSE L1 优化函数ADAM SGD 优化算法等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如有侵权,请联系删除!

pytorch框架中损失函数与优化器介绍:

目录

1. 损失函数:

1.1 nn.L1Loss

1.2 nn.SmoothL1Loss

1.3 nn.MSELoss

1.4 nn.BCELoss

1.5 nn.CrossEntropyLoss

1.6 nn.NLLLoss

1.7 nn.NLLLoss2d

2.优化器Optim

2.1 使用

2.2 基类 Optimizer

2.3 方法

3. 优化算法

3.1 随机梯度下降算法 SGD算法

3-2 平均随机梯度下降算法 ASGD算法

3-3 Adagrad算法

3-4 自适应学习率调整 Adadelta算法

3-5 RMSprop算法

3-6 自适应矩估计 Adam算法

3-7 Adamax算法(Adamd的无穷范数变种)

3-8 SparseAdam算法

3-9 L-BFGS算法

3-10 弹性反向传播算法 Rprop算法

1.1 nn.L1Loss的主要形式 

1.2 nn.SmoothL1Loss

1.3 nn.MSELoss

1.4 nn.BCELoss

1.5 nn.CrossEntropyLoss

1.6 nn.NLLLoss

1.7 nn.NLLLoss2d

这些参数都比较的经典,需要认真的学习

根据主要梯度下降的方向进行优化,

比如爬山,如果找到最低点,那么肯定朝着最陡峭(梯度最大)的反方向去下坡,会最快的走到最低点

那么沿着梯度反方向,随机更新一下梯度,然后可以找到一个最值,进而慢慢的找到最值

处理随机更新梯度,还有很多的方法 比如随机小批量  小批量等等

图 一个求解过程

 

提取找寻的过程

 

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
%matplotlib inline
#  二元一次函数图像
fig = plt.figure()
ax = Axes3D(fig)
x = np.arange(-10, 10, 1)
y = np.arange(-10, 10, 1)
X, Y = np.meshgrid(x, y)  # 网格的创建,生成二维数组,这个是关键
Z = (1 - X) ** 2 + 100 * (Y - X ** 2) ** 2
Z=Z
plt.xlabel('x')
plt.ylabel('y')
# 将函数显示为3d,rstride和cstride代表row(行)和column(列)的跨度cmap为色图分类
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
plt.show()

    
    
def cal_rosenbrock(x1, x2):
    """
    计算rosenbrock函数的值
    :param x1:
    :param x2:
    :return:
    """
    return (1 - x1) ** 2 + 100 * (x2 - x1 ** 2) ** 2+3


def cal_rosenbrock_prax(x1, x2):
    """
    对x1求偏导
    """
    return -2 + 2 * x1 - 400 * (x2 - x1 ** 2) * x1

def cal_rosenbrock_pray(x1, x2):
    """
    对x2求偏导
    """
    return 200 * (x2 - x1 ** 2)

def for_rosenbrock_func(max_iter_count=100000, step_size=0.001):
    pre_x = [1.5,1.5]#np.zeros((2,), dtype=np.float32)
    loss = 10
    iter_count = 0
    x1=[]
    y1=[]
    z1=[]
    while loss > 0.0001 and iter_count < max_iter_count:
        error = np.zeros((2,), dtype=np.float32)
        error[0] = cal_rosenbrock_prax(pre_x[0], pre_x[1])
        error[1] = cal_rosenbrock_pray(pre_x[0], pre_x[1])

        for j in range(2):
            pre_x[j] -= step_size * error[j]
        ww1=cal_rosenbrock(pre_x[0], pre_x[1])
        loss = cal_rosenbrock(pre_x[0], pre_x[1])-3  # 最小值为0
        
        if iter_count%400==0:
            #print("iter_count: ", iter_count, "the loss:", loss, "SHUZHI:", ww1)
            #  二元一次函数图像
            #fig = plt.figure()
            #ax = Axes3D(fig)
            x = np.arange(-10, 10, 1)
            y = np.arange(-10, 10, 1)
            X, Y = np.meshgrid(x, y)  # 网格的创建,生成二维数组,这个是关键
            Z = (1 - X) ** 2 + 100 * (Y - X ** 2) ** 2
            Z=Z
            #plt.xlabel('x')
            #plt.ylabel('y')
            x1.append(pre_x[0])
            y1.append(pre_x[1])
            z1.append(0+loss)
            # 将函数显示为3d,rstride和cstride代表row(行)和column(列)的跨度cmap为色图分类
            #ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
            #ax.scatter(pre_x[0], pre_x[1],loss, c='red',s=250, label='sss')#, c=None, depthshade=True, *args, *kwargs)
            #plt.show()
            #plt.plot(pre_x[0], pre_x[1],loss, s=100)#, label='acc')
        iter_count += 1
        #print(x1,y1,z1)
    print('ok1')
    return pre_x,x1,y1,z1

if __name__ == '__main__':
    %matplotlib inline
    w,x1,y1,z1 = for_rosenbrock_func() 
    
    #print(w,x1,y1,z1)
    fig = plt.figure()
    #ax = Axes3D(fig)
    ax= plt.axes(projection='3d')
    #ax.set_xlim(1, 1.5)  # X轴,横向向右方向
    #ax.set_ylim(1, 1.5)  # Y轴,左向与X,Z轴互为垂直
    #ax.set_zlim(1, 35)  # 竖向为Z轴
    x = np.arange(-10, 10, 1)
    y = np.arange(-10, 10, 1)
    X, Y = np.meshgrid(x, y)  # 网格的创建,生成二维数组,这个是关键
    Z = (1 - X) ** 2 + 100 * (Y - X ** 2) ** 2
    Z=Z
    plt.xlabel('x')
    plt.ylabel('y')

    # 将函数显示为3d,rstride和cstride代表row(行)和column(列)的跨度cmap为色图分类
    ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
    ax.scatter(x1,y1,z1, c='red',s=150)#, c=None, depthshade=True, *args, *kwargs)
    
    #plt.xlim(1, 1.5)
    #plt.ylim(1, 1.5)
    #plt.zlim(1, 31.5)

    plt.show()
    fig = plt.figure()
    ax = Axes3D(fig)
    ax.scatter(x1,y1,z1, c='red',s=150)#, c=None, depthshade=True, *args, *kwargs)
    plt.show()
    #ax.scatter(x1, y1, z1, s=20, c=None, depthshade=True, *args, *kwargs)
    plt.show()

这篇关于转载的 损失函数MSE L1 优化函数ADAM SGD 优化算法等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828815

相关文章

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>