转载的 损失函数MSE L1 优化函数ADAM SGD 优化算法等

2024-03-20 08:08

本文主要是介绍转载的 损失函数MSE L1 优化函数ADAM SGD 优化算法等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如有侵权,请联系删除!

pytorch框架中损失函数与优化器介绍:

目录

1. 损失函数:

1.1 nn.L1Loss

1.2 nn.SmoothL1Loss

1.3 nn.MSELoss

1.4 nn.BCELoss

1.5 nn.CrossEntropyLoss

1.6 nn.NLLLoss

1.7 nn.NLLLoss2d

2.优化器Optim

2.1 使用

2.2 基类 Optimizer

2.3 方法

3. 优化算法

3.1 随机梯度下降算法 SGD算法

3-2 平均随机梯度下降算法 ASGD算法

3-3 Adagrad算法

3-4 自适应学习率调整 Adadelta算法

3-5 RMSprop算法

3-6 自适应矩估计 Adam算法

3-7 Adamax算法(Adamd的无穷范数变种)

3-8 SparseAdam算法

3-9 L-BFGS算法

3-10 弹性反向传播算法 Rprop算法

1.1 nn.L1Loss的主要形式 

1.2 nn.SmoothL1Loss

1.3 nn.MSELoss

1.4 nn.BCELoss

1.5 nn.CrossEntropyLoss

1.6 nn.NLLLoss

1.7 nn.NLLLoss2d

这些参数都比较的经典,需要认真的学习

根据主要梯度下降的方向进行优化,

比如爬山,如果找到最低点,那么肯定朝着最陡峭(梯度最大)的反方向去下坡,会最快的走到最低点

那么沿着梯度反方向,随机更新一下梯度,然后可以找到一个最值,进而慢慢的找到最值

处理随机更新梯度,还有很多的方法 比如随机小批量  小批量等等

图 一个求解过程

 

提取找寻的过程

 

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
%matplotlib inline
#  二元一次函数图像
fig = plt.figure()
ax = Axes3D(fig)
x = np.arange(-10, 10, 1)
y = np.arange(-10, 10, 1)
X, Y = np.meshgrid(x, y)  # 网格的创建,生成二维数组,这个是关键
Z = (1 - X) ** 2 + 100 * (Y - X ** 2) ** 2
Z=Z
plt.xlabel('x')
plt.ylabel('y')
# 将函数显示为3d,rstride和cstride代表row(行)和column(列)的跨度cmap为色图分类
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
plt.show()

    
    
def cal_rosenbrock(x1, x2):
    """
    计算rosenbrock函数的值
    :param x1:
    :param x2:
    :return:
    """
    return (1 - x1) ** 2 + 100 * (x2 - x1 ** 2) ** 2+3


def cal_rosenbrock_prax(x1, x2):
    """
    对x1求偏导
    """
    return -2 + 2 * x1 - 400 * (x2 - x1 ** 2) * x1

def cal_rosenbrock_pray(x1, x2):
    """
    对x2求偏导
    """
    return 200 * (x2 - x1 ** 2)

def for_rosenbrock_func(max_iter_count=100000, step_size=0.001):
    pre_x = [1.5,1.5]#np.zeros((2,), dtype=np.float32)
    loss = 10
    iter_count = 0
    x1=[]
    y1=[]
    z1=[]
    while loss > 0.0001 and iter_count < max_iter_count:
        error = np.zeros((2,), dtype=np.float32)
        error[0] = cal_rosenbrock_prax(pre_x[0], pre_x[1])
        error[1] = cal_rosenbrock_pray(pre_x[0], pre_x[1])

        for j in range(2):
            pre_x[j] -= step_size * error[j]
        ww1=cal_rosenbrock(pre_x[0], pre_x[1])
        loss = cal_rosenbrock(pre_x[0], pre_x[1])-3  # 最小值为0
        
        if iter_count%400==0:
            #print("iter_count: ", iter_count, "the loss:", loss, "SHUZHI:", ww1)
            #  二元一次函数图像
            #fig = plt.figure()
            #ax = Axes3D(fig)
            x = np.arange(-10, 10, 1)
            y = np.arange(-10, 10, 1)
            X, Y = np.meshgrid(x, y)  # 网格的创建,生成二维数组,这个是关键
            Z = (1 - X) ** 2 + 100 * (Y - X ** 2) ** 2
            Z=Z
            #plt.xlabel('x')
            #plt.ylabel('y')
            x1.append(pre_x[0])
            y1.append(pre_x[1])
            z1.append(0+loss)
            # 将函数显示为3d,rstride和cstride代表row(行)和column(列)的跨度cmap为色图分类
            #ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
            #ax.scatter(pre_x[0], pre_x[1],loss, c='red',s=250, label='sss')#, c=None, depthshade=True, *args, *kwargs)
            #plt.show()
            #plt.plot(pre_x[0], pre_x[1],loss, s=100)#, label='acc')
        iter_count += 1
        #print(x1,y1,z1)
    print('ok1')
    return pre_x,x1,y1,z1

if __name__ == '__main__':
    %matplotlib inline
    w,x1,y1,z1 = for_rosenbrock_func() 
    
    #print(w,x1,y1,z1)
    fig = plt.figure()
    #ax = Axes3D(fig)
    ax= plt.axes(projection='3d')
    #ax.set_xlim(1, 1.5)  # X轴,横向向右方向
    #ax.set_ylim(1, 1.5)  # Y轴,左向与X,Z轴互为垂直
    #ax.set_zlim(1, 35)  # 竖向为Z轴
    x = np.arange(-10, 10, 1)
    y = np.arange(-10, 10, 1)
    X, Y = np.meshgrid(x, y)  # 网格的创建,生成二维数组,这个是关键
    Z = (1 - X) ** 2 + 100 * (Y - X ** 2) ** 2
    Z=Z
    plt.xlabel('x')
    plt.ylabel('y')

    # 将函数显示为3d,rstride和cstride代表row(行)和column(列)的跨度cmap为色图分类
    ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
    ax.scatter(x1,y1,z1, c='red',s=150)#, c=None, depthshade=True, *args, *kwargs)
    
    #plt.xlim(1, 1.5)
    #plt.ylim(1, 1.5)
    #plt.zlim(1, 31.5)

    plt.show()
    fig = plt.figure()
    ax = Axes3D(fig)
    ax.scatter(x1,y1,z1, c='red',s=150)#, c=None, depthshade=True, *args, *kwargs)
    plt.show()
    #ax.scatter(x1, y1, z1, s=20, c=None, depthshade=True, *args, *kwargs)
    plt.show()

这篇关于转载的 损失函数MSE L1 优化函数ADAM SGD 优化算法等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828815

相关文章

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数