【Eviews实战】——ARIMA模型建模

2024-03-18 06:28

本文主要是介绍【Eviews实战】——ARIMA模型建模,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

文章目录

  • 1 数据背景
  • 2 时序可视化
  • 3 平稳性检验
  • 4 一阶差分后序列
  • 5 模型定阶
  • 6 模型估计
  • 7 模型改进
  • 8 模型拟合
  • 9 模型预测

目的:熟悉eviews基本操作, 通过建立ARIMA模型进行时间序列预测。

该篇文章对1990年1月-1997年12月我国消费价格指数进行平稳性检验,并利用ARIMA模型预测未来6个月消费价格指数变动情况。文章涉及ADF检验; τ \tau τ检验;t检验、自回归过程、移动平均过程等。

1 数据背景

  我国1990年1月-1997年12月消费价格指数数据,数据来源于实验课数据文件,部分数据如表1所示。

2 时序可视化

  利用eviews10.0绘制1990年1月-1997年12月我国消费价格指数数据时序图:

  由图1可以看出,我国消费价格指数数据存在趋势项和截距项,为非平稳数据,接下来利用ADF单位根检验并判断其所属类型。

3 平稳性检验

  首先检验原序列的平稳性,根据ADF检验模型:

  利用eviews10.0分别对三个模型进行ADF检验得到结果:

①模型3:

  结果显示, τ \tau τ统计量显示结果不拒绝显著性水平为0.05的原假设,继续模型2的单位根检验。

②模型2:

  结果显示, τ \tau τ统计量显示结果不拒绝显著性水平为0.05的原假设,继续模型1的单位根检验。

③模型1:

  结果显示, τ \tau τ统计量显示结果不拒绝显著性水平为0.05的原假设,三种模型检验均未通过显著性检验,说明原序列是非平稳序列,且三种情形下,检验模型对应的AIC、SC、HQ值如表5所示。

  由5单位根检验可知,综合三种情况下的AIC、SC、HQ信息准则的值可知,第2种情形的值最小,即该序列为存在截距项的单位根过程。继续检验其一阶差分后的序列是否平稳。

4 一阶差分后序列

  根据ADF检验模型:

  其中, △ 2 Y t \bigtriangleup ^2Y_t 2Yt表示对 Y t Y_t Yt进行两次差分。

  利用eviews10.0分别对三个模型进行ADF检验得到结果:

①模型3:

  结果显示, τ \tau τ统计量显示结果拒绝显著性水平为0.05的原假设,同时,趋势项@TREND(“1985”)通过显著性水平为0.05的显著性检验,可得到我国人均食品消费支出的1阶差分序列是平稳的,但截距项未通过显著性水平为0.05的显著性检验,为使结果比较更为细致,继续进行模型2、模型1的单位根检验。

②模型2:

  结果显示, τ \tau τ统计量显示结果拒绝显著性水平为0.05的原假设,同时,截距项通过显著性水平为0.05的显著性检验,表明即该序列ip(我国消费价格指数)的一阶差分序列是平稳序列,即一阶单整,计为I(1),说明经过一阶差分后,实验数据符合ARIMA模型的平稳性条件。

5 模型定阶

  通过图2和表8可初步判定建立ARIMA(2,1,2)模型。

  通过图2和表8可初步判定建立ARIMA(2,1,2)模型。

6 模型估计

  利用eviews10.0得到回归结果:

  回归结果显示,拟合效果并不是很好,且存在移动平均单位根为1,模型并不稳定,故通过改进AR(p),MA(q)进行改进。

7 模型改进

  通过改进一阶差分后消费价格指数与自回归、移动平均组合方式寻找最优模型。

  模型改进后结果汇总见表18。

  通过图18显示,自变量选取AR(1),MA(2)时参数均通过0.05显著性水平的显著性检验,且AIC相对于变量选取AR(2),MA(1)更小,同时,AR与MA单位根如图3所示:

  由图3显示,AR、MA单位根均小于1,模型估计具有稳定性,同时根据残差图及残差ACF、PACF可以判断回归方程残差序列趋于平稳,为白噪声序列,模型建立成功。

  故选取最终模型:

8 模型拟合

  由图5可以看出,回归方程的拟合效果较好。

9 模型预测

  根据图6和表3,看可以看出,未来一段时间居民消费价格指数总体呈上升趋势。

这篇关于【Eviews实战】——ARIMA模型建模的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/821461

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...