【Eviews实战】——ARIMA模型建模

2024-03-18 06:28

本文主要是介绍【Eviews实战】——ARIMA模型建模,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

文章目录

  • 1 数据背景
  • 2 时序可视化
  • 3 平稳性检验
  • 4 一阶差分后序列
  • 5 模型定阶
  • 6 模型估计
  • 7 模型改进
  • 8 模型拟合
  • 9 模型预测

目的:熟悉eviews基本操作, 通过建立ARIMA模型进行时间序列预测。

该篇文章对1990年1月-1997年12月我国消费价格指数进行平稳性检验,并利用ARIMA模型预测未来6个月消费价格指数变动情况。文章涉及ADF检验; τ \tau τ检验;t检验、自回归过程、移动平均过程等。

1 数据背景

  我国1990年1月-1997年12月消费价格指数数据,数据来源于实验课数据文件,部分数据如表1所示。

2 时序可视化

  利用eviews10.0绘制1990年1月-1997年12月我国消费价格指数数据时序图:

  由图1可以看出,我国消费价格指数数据存在趋势项和截距项,为非平稳数据,接下来利用ADF单位根检验并判断其所属类型。

3 平稳性检验

  首先检验原序列的平稳性,根据ADF检验模型:

  利用eviews10.0分别对三个模型进行ADF检验得到结果:

①模型3:

  结果显示, τ \tau τ统计量显示结果不拒绝显著性水平为0.05的原假设,继续模型2的单位根检验。

②模型2:

  结果显示, τ \tau τ统计量显示结果不拒绝显著性水平为0.05的原假设,继续模型1的单位根检验。

③模型1:

  结果显示, τ \tau τ统计量显示结果不拒绝显著性水平为0.05的原假设,三种模型检验均未通过显著性检验,说明原序列是非平稳序列,且三种情形下,检验模型对应的AIC、SC、HQ值如表5所示。

  由5单位根检验可知,综合三种情况下的AIC、SC、HQ信息准则的值可知,第2种情形的值最小,即该序列为存在截距项的单位根过程。继续检验其一阶差分后的序列是否平稳。

4 一阶差分后序列

  根据ADF检验模型:

  其中, △ 2 Y t \bigtriangleup ^2Y_t 2Yt表示对 Y t Y_t Yt进行两次差分。

  利用eviews10.0分别对三个模型进行ADF检验得到结果:

①模型3:

  结果显示, τ \tau τ统计量显示结果拒绝显著性水平为0.05的原假设,同时,趋势项@TREND(“1985”)通过显著性水平为0.05的显著性检验,可得到我国人均食品消费支出的1阶差分序列是平稳的,但截距项未通过显著性水平为0.05的显著性检验,为使结果比较更为细致,继续进行模型2、模型1的单位根检验。

②模型2:

  结果显示, τ \tau τ统计量显示结果拒绝显著性水平为0.05的原假设,同时,截距项通过显著性水平为0.05的显著性检验,表明即该序列ip(我国消费价格指数)的一阶差分序列是平稳序列,即一阶单整,计为I(1),说明经过一阶差分后,实验数据符合ARIMA模型的平稳性条件。

5 模型定阶

  通过图2和表8可初步判定建立ARIMA(2,1,2)模型。

  通过图2和表8可初步判定建立ARIMA(2,1,2)模型。

6 模型估计

  利用eviews10.0得到回归结果:

  回归结果显示,拟合效果并不是很好,且存在移动平均单位根为1,模型并不稳定,故通过改进AR(p),MA(q)进行改进。

7 模型改进

  通过改进一阶差分后消费价格指数与自回归、移动平均组合方式寻找最优模型。

  模型改进后结果汇总见表18。

  通过图18显示,自变量选取AR(1),MA(2)时参数均通过0.05显著性水平的显著性检验,且AIC相对于变量选取AR(2),MA(1)更小,同时,AR与MA单位根如图3所示:

  由图3显示,AR、MA单位根均小于1,模型估计具有稳定性,同时根据残差图及残差ACF、PACF可以判断回归方程残差序列趋于平稳,为白噪声序列,模型建立成功。

  故选取最终模型:

8 模型拟合

  由图5可以看出,回归方程的拟合效果较好。

9 模型预测

  根据图6和表3,看可以看出,未来一段时间居民消费价格指数总体呈上升趋势。

这篇关于【Eviews实战】——ARIMA模型建模的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/821461

相关文章

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验