Can agents learn inside of their own dreams?

2024-03-14 15:38
文章标签 learn inside agents dreams

本文主要是介绍Can agents learn inside of their own dreams?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这次阅读一篇NIPS2018的文章,关于World Models in Reinforcement Learning. 原文链接

按照惯例,直接上粗暴的摘要和笔记吧

  1. Large RNNs are highly expressive models that can learn rich spatial and temporal representations of data. However, many model-free RL methods in the literature often only use small neural networks with few parameters. The RL algorithm is often bottlenecked by the credit assignment problem1, which makes it hard for traditional RL algorithms to learn millions of weights of a large model, hence in practice, smaller networks are used as they iterate faster to a good policy during training.
  2. 精髓在这张图里了,引入了RNN来对environment中的state transition进行一定程度的预测,基于预测来选择action。

  3. Our agent consists of three components that work closely together: Vision (V), Memory (M), and Controller (C).

 

这篇关于Can agents learn inside of their own dreams?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808874

相关文章

Learn ComputeShader 09 Night version lenses

这次将要制作一个类似夜视仪的效果 第一步就是要降低图像的分辨率, 这只需要将id.xy除上一个数字然后再乘上这个数字 可以根据下图理解,很明显通过这个操作在多个像素显示了相同的颜色,并且很多像素颜色被丢失了,自然就会有降低分辨率的效果 效果: 但是这样图像太锐利了,我们加入噪声去解决这个问题 [numthreads(8, 8, 1)]void CSMain(uint3 id

【Agent】Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents

1、问题背景 传统的训练Agent方法是在静态数据集上进行监督预训练,这种方式对于要求Agent能够自主的在动态环境中可进行复杂决策的能力存在不足。例如,要求Agent在web导航等动态设置中执行复杂决策。 现有的方式是用高质量数据进行微调来增强Agent在动态环境中的决策能力,但这往往会出现复合错误和有限的探测数据,最终导致结果不够理想。 2、提出方法 Agent Q 框架将蒙特卡洛树搜

机器学习-有监督学习-分类算法:最大熵模型【迭代过程计算量巨大,实际应用比较难;scikit-learn甚至都没有最大熵模型对应的类库】

最大熵模型(maximum entropy model, MaxEnt)也是很典型的分类算法了。 它和逻辑回归类似,都是属于对数线性分类模型。在损失函数优化的过程中,使用了和支持向量机类似的凸优化技术。而对熵的使用,让我们想起了决策树算法中的ID3和C4.5算法。 理解了最大熵模型,对逻辑回归,支持向量机以及决策树算法都会加深理解。本文就对最大熵模型的原理做一个小结。 一、熵和条件熵 熵

生信机器学习入门3 - Scikit-Learn训练机器学习分类感知器

1. 在线读取iris数据集 import osimport pandas as pd# 下载try:s = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'print('From URL:', s)df = pd.read_csv(s,header=None,encoding='utf-8'

OpenCV2.4.10之samples_cpp_tutorial-code_learn-----ImgTrans(仿射变换)

本系列学习笔记参考自OpenCV2.4.10之opencv\sources\samples\cpp\tutorial_code和http://www.opencv.org.cn/opencvdoc/2.3.2/html/genindex.html 本博文将继续学习opencv-tutorial-code中的ImgTrans,这里讲主要介绍仿射变换。仿射变换是直角坐标系的一种,描述的是一

OpenCV2.4.10之samples_cpp_tutorial-code_learn-----ImgTrans(图片边框与图片卷积)

本系列学习笔记参考自OpenCV2.4.10之 opencv\sources\samples\cpp\tutorial_code和 http://www.opencv.org.cn/opencvdoc/2.3.2/html/genindex.html 本博文将继续介绍如何给一张图片添加边框以及如何对一张图片进行卷积。核心函数为copyMakeBorder与filter2D 1.co

OpenCV2.4.10之samples_cpp_tutorial-code_learn-----ImgTrans(Canny边缘检测)

本系列学习笔记参考自OpenCV2.4.10之 opencv\sources\samples\cpp\tutorial_code和 http://www.opencv.org.cn/opencvdoc/2.3.2/html/genindex.html 本博文接下来将介绍图像变换相关的Demo,如下图所示: CannyDetector_Demo.cpp(Canny边缘检测)

OpenCV2.4.10之samples_cpp_tutorial-code_learn-----ImgProc(图像处理)

本系列学习笔记参考自OpenCV2.4.10之 opencv\sources\samples\cpp\tutorial_code和 http://www.opencv.org.cn/opencvdoc/2.3.2/html/genindex.html       本博文将继续学习 OpenCV2.4.10中tutorial-code下的ImgProc,还有对于涉及到的知

OpenCV2.4.10之samples_cpp_tutorial-code_learn------安装配置与第一个Opencv程序

本系列学习笔记参考自OpenCV2.4.10之 opencv\sources\samples\cpp\tutorial_code和 http://www.opencv.org.cn/opencvdoc/2.3.2/html/genindex.html opencv作为一个开源的二维图形库,提供了一套完整的二维图像处理等相关算法的C/C++实现。自opencv2.0版

分类学习-支持向量机(Scikit-learn)

手写体数字识别 1、手写体数据读取 from sklearn.datasets import load_digitsdigits = load_digits() #获得的手写体数据图片存储在digits变量中print(digits.data.shape) 2、数据分割 from sklearn.cross_validation import train_te