本文主要是介绍多维时序 | Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
多维时序 | Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测
目录
- 多维时序 | Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
1.Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测;
2.运行环境为Matlab2021及以上;
3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
4.data为数据集,main1_VMD.m、main2_VMD_CNN_GRU.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
VMD-CNN-GRU是一种结合了变分模态分解(VMD)、卷积神经网络(CNN)和门控循环单元(GRU)的多变量时间序列预测模型。这种模型在处理复杂时间序列数据时,能够有效地提取特征、捕捉时间依赖关系,并进行准确的预测。
首先,变分模态分解(VMD)是一种自适应的信号处理方法,能够将原始时间序列数据分解为一系列具有不同频率的子序列。这种分解有助于提取出数据中的关键特征,并降低噪声对预测结果的影响。
接下来,卷积神经网络(CNN)被用于进一步处理这些子序列。CNN具有强大的特征提取能力,能够自动学习并提取出子序列中的有用信息。通过卷积操作,CNN可以有效地捕捉到数据中的局部特征和空间依赖关系。
然后,门控循环单元(GRU)被用来处理经过CNN处理后的数据。GRU是一种循环神经网络(RNN)的变体,它具有更好的长期依赖关系捕捉能力。通过GRU的更新门和重置门机制,模型可以学习到时间序列数据中的时间依赖关系,并生成准确的预测结果。
程序设计
- 完整程序和数据获取方式资源处下载Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res =xlsread('data.xlsx');%% 数据分析
num_size = 0.7; % 训练集占数据集比例num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);f_ = size(P_train, 1); % 输入特征维度%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);% 输入特征sequenceInputLayer([numFeatures,1,1],'name','input') %输入层设置sequenceFoldingLayer('name','fold') %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。% CNN特征提取convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1') %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长batchNormalizationLayer('name','batchnorm1') % BN层,用于加速训练过程,防止梯度消失或梯度爆炸reluLayer('name','relu1') % ReLU激活层,用于保持输出的非线性性及修正梯度的问题% 池化层maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool') % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式% 展开层sequenceUnfoldingLayer('name','unfold') %独立的卷积运行结束后,要将序列恢复%平滑层flattenLayer('name','flatten')gruLayer(25,'Outputmode','last','name','hidden1') dropoutLayer(0.2,'name','dropout_1') % Dropout层,以概率为0.2丢弃输入fullyConnectedLayer(1,'name','fullconnect') % 全连接层设置(影响输出维度)(cell层出来的输出层) %
参考资料
[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691
这篇关于多维时序 | Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!