数据结构与算法(Python版)学习笔记——算法衡量指标、大O表示法、列表和字典性能对比

本文主要是介绍数据结构与算法(Python版)学习笔记——算法衡量指标、大O表示法、列表和字典性能对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

中国大学MOOC《数据结构与算法(Python版)》(北京大学陈斌教授) 学习笔记

文章目录

    • 什么是好算法
    • 算法时间的度量指标
    • 数量级函数(大O)
    • 不同算法,大O不同(举例)
    • Python的两种数据类型(List和Dict)的性能对比
      • 对于List列表
      • 对于Dict字典

什么是好算法

我们主要从计算资源消耗的角度来评判和比较算法(即算法分析)。
更高效利用计算资源,或者更少占用计算资源的算法,就是好算法。
计算资源包括运行过程中所需的存储空间运行时间
故运行时间是一个衡量算法好坏的重要指标,

运行时间检测方法:time模块、timeit模块。
Jupyter notebook中,可在代码块开头加 %timeit

%timeit
lst = []

由于绝对运行时间常常受编程语言、运行环境等影响,需要有更好的度量指标来衡量运行时间。

算法时间的度量指标

对于编程语言来说,一共有三种形式的语句:

  1. 定义语句:如定义一个变量。不占计算资源。
  2. 三种控制流语句(顺序、分支、循环):组织作用,不实施处理。
  3. 赋值语句:包含(表达式)计算和(变量)存储

所以赋值语句的数量可成为一个算法的合适的度量指标。

a = 100
a += 1

数量级函数(大O)

引入T(n),表示赋值语句数量函数。

a = 100
for i in range(100):a += 1

上面代码赋值了n+1次,故T(n)=n+1。但是随着n的增大,这个1显得无足轻重,n为该问题的主导部分,称为问题规模

数量级函数描述了该主导部分,称作“大O”表示法。

记作: O ( f ( n ) ) O(f(n)) O(f(n))
其中 f ( n ) f(n) f(n)为主导部分。在上例中,即为 O ( n ) O(n) O(n)

举个栗子: T ( n ) = 5 n 2 + 27 n + 1005 T(n)=5n^2+27n+1005 T(n)=5n2+27n+1005,这里n非常大时平方项占主导,故该例为: O ( n 2 ) O(n^2) O(n2)

常见数量级函数(按性能大小排列):

f(n)名称
1常数
log(n)对数
n线性
n l o g ( n ) nlog(n) nlog(n)对数线性
n 2 n^2 n2平方
n 3 n^3 n3立方
2 n 2^n 2n指数

不同算法,大O不同(举例)

举例:变位词判断,如判断 “python” 和 “typhon” 是否为变位词。
以下四种算法:

  1. 逐字检查:二重循环, O ( n 2 ) O(n^2) O(n2)
  2. 排序比较:各自按字符编码排序,看是否一样, O ( n l o g ( n ) ) O(nlog(n)) O(nlog(n))
  3. 暴力法:穷尽所有可能组合,再判断两个词是否在组合集内, O ( n ! ) O(n!) O(n!),最不可取
  4. 计数比较:统计两个词中每个字母出现的次数,看是否相同, O ( n ) O(n) O(n)

在方法4中,总操作次数T(n)=2n+26,其数量级为O(n)。
算法依赖于两个长度为26的计数器列表,来保存字符计数,相比前3个算法需要更多的存储空间。
因此这个算法以牺牲存储空间来换取运行时间,达到了运行速度的提升。
我们常需在时间空间之间做取舍

Python的两种数据类型(List和Dict)的性能对比

Python的常用数据类型List列表Dict字典在使用性能上是存在差异的,体现在其各自的操作(函数)的数量级函数上。
两种数据类型的常用操作:

类型listdict
索引自然数i不可变类型值key
添加append、extend、insertb[k]=v
删除pop、remove*pop
更新a[i]=vb[k]=v
正查a[i]、a[i:j]b[k]、copy
反查index(v)、count(v)
其它reverse、sorthas_key、update

对于List列表

按索引取值和赋值(v = a[i], a[i] = v): O ( 1 ) O(1) O(1)
列表增长 append(v): O ( 1 ) O(1) O(1)
列表增长 lst = lst + [v]: O ( n + k ) O(n+k) O(n+k)
k为增加列表的长度,两种列表增长的方式性能差异很大。
slice切片 lst[1:10]: O ( k ) O(k) O(k)
pop() : O ( 1 ) O(1) O(1)
pop(i) : O ( n ) O(n) O(n)
两种删除方式性能有差异。
reverse() : O ( n ) O(n) O(n)
sort() : O ( n l o g ( n ) ) O(nlog(n)) O(nlog(n))
包含判断in v in lst O ( n ) O(n) O(n)

对于Dict字典

取值get和赋值set : O ( 1 ) O(1) O(1)
包含判断 contains(in) : O ( 1 ) O(1) O(1)
del dct[key] : O ( 1 ) O(1) O(1)
这里字典的包含判断性能 O ( 1 ) O(1) O(1)优于列表 O ( n ) O(n) O(n)

更多Python数据类型算法复杂度参考官网:
https://wiki.python.org/moin/TimeComplexity

(fin)

这篇关于数据结构与算法(Python版)学习笔记——算法衡量指标、大O表示法、列表和字典性能对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/798617

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2