数学建模【对粒子群算法中惯性权重和学习因子的改进】

2024-03-11 16:04

本文主要是介绍数学建模【对粒子群算法中惯性权重和学习因子的改进】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、改进原因

这是前面 数学建模【粒子群算法】 中的一部分,这里提到了w存在的一些问题,那么本篇介绍一些方法对w和因子进行一些改进,提高粒子群算法的效率和准确度。

二、改进方法

1.线性递减惯性权重

惯性权重w体现的是粒子继承先前的速度的能力,Shi,Y最先将惯性权重w引入到粒子群算法中,并分析指出一个较大的惯性权值有利于全局搜索,而一个较小的权值则更利于局部搜索。为了更好地平衡算法的全局搜索以及局部搜索能力,Shi,Y提出了线性递减惯性权重LDIW(Linear Decreasing Inertia Weight),公式如下:

其中d是当前迭代的次数,K是迭代总次数。

wstart一般取0.9,wend一般取0.4。与原来的相比,现在的惯性权重和迭代次数有关。

参考论文:Shi, Y. and Eberhart, R.C. (1999) Empirical Study of Particle Swarm Optimization. Proceedings of the 1999 Congress on Evolutionary Computation, Washington DC, 6-9 July 1999, 1945- 1950.

既然有线性递减惯性权重,那肯定也有非线性递减惯性权重。

在网上找到结果非常多,这里给出常用的两个:

2.自适应惯性权重

假设现在求最小值问题,那么:

一个较大的惯性权值有利于全局搜索,而一个较小的权值则更利于局部搜索。

假设现在一共五个粒子ABCDE,此时它们的适应度分别为1,2,3,4,5。取最大惯性权重为0.9,最小惯性权重为0.4。那么,这五个粒子的惯性权重应该为:0.4,0.65,0.9,0.9,0.9。适应度越小,说明距离最优解越近,此时更需要局部搜索;适应度越大,说明距离最优解越远,此时更需要全局搜索。

假设现在求最大值问题,那么:

一个较大的惯性权值有利于全局搜索,而一个较小的权值则更利于局部搜索。

假设现在一共五个粒子ABCDE,此时它们的适应度分别为1,2,3,4,5。取最大惯性权重为0.9,最小惯性权重为0.4 。那么,这五个粒子的惯性权重应该为:0.9,0.9,0.9,0.65,0.4。适应度越小,说明距离最优解越远,此时更需要全局搜索;适应度越大,说明距离最优解越近,此时更需要局部搜索。

3.随机惯性权重

最开始提出随机惯性权重的论文:Zhang L, Yu H, Hu S. A New Approach to Improve Particle Swarm Optimization[J]. lecture notes in computer science, 2003, 2723:134-139.

使用随机的惯性权重,可以避免在迭代前期局部搜索能力的不足;也可以避免在迭代后期全局搜索能力的不足。

后面有一个对随机惯性权重的改进。

参考文献:基于随机惯性权重的简化粒子群优化算法[J].计算机应用研究,2014, 031(002):361-363,391.

其中:μmin是随机惯性权重的最小值;μmax是随机惯性权重的最大值;rand()为[0, 1]均匀分布随机数;第三项中randn()为正态分布的随机数;σ(标准差)用来度量随机变量权重w与其数学期望(即均值)之间的偏离程度,该项是为了控制取值中的权重误差,使权重w有利于向期望权重方向进化,这样做的依据是正常情况下实验误差服从正态分布。

一般σ取0.2-0.5之间的一个数。

4.压缩因子法

个体学习因子c1和社会(群体)学习因子c2决定了粒子本身经验信息和其他粒子的经验信息对粒子运行轨迹的影响,其反映了粒子群之间的信息交流。设置c1较大的值,会使粒子过多地在自身的局部范围内搜索,而较大的c2的值,则又会促使粒子过早收敛到局部最优值。

为了有效地控制粒子的飞行速度,使算法达到全局搜索与局部搜索两者间的有效平衡,Clerc构造了引入收缩因子的PSO模型,采用了压缩因子,这种调整方法通过合适选取参数,可确保PS0算法的收敛性,并可取消对速度的边界限制。

参考文献:M. Clerc. The swarm and queen: towards a deterministic and adaptive particle swarm op-timization. Proc. Congress on Evolutionary Computation, Washington, DC,.Piscataway,NJ:IEEE Service Center (1999) 1951- 1957

压缩因子法中应用较多的个体学习因子c1和社会学习因子c2均取2.05,用我们自己的符号可以表示为:

惯性权重w = 0.9,速度更新公式为:

将c1r1看成c1即可,c2r2看成c2即可。

参考文献:Eberhart R C. Comparing inertia weights and constriction factors in optimization[C]// Proceedings of the 2000 IEEE Congress on Evolutionary Computation, La Jolla, CA. IEEE, 2000.

5.非对称学习因子法

在经典PSO算法中,由于在手优后期粒子缺之多样性,易过早收敛于局部极值,因此通过调节学习因子,在搜索初期使粒子进行大范围搜索,以期获得具有更好多样性的高质量粒子,尽可能摆脱局部极值的干扰。

学习因子c1和c2决定粒子个体经验信息和其他粒子经验信息对寻优轨迹的影响,反映了粒子之间的信息交换。设置较大的c1值,会使粒子过多的在局部搜索(这里的局部搜索指的是粒子会过多的在自身的局部范围内进行搜索,从全局来看实际上增大了搜索范围。可以想象成每个粒子各干各的事情,团队意识比较弱);反之,较大的c2值会使粒子过早收敛到局部最优值。因此,在算法搜索初期采用较大的c1值和较小的c2值,使粒子尽量发散到搜索空间即强调“个体独立意识”,而较少受到种群内其他粒子即“社会意识部分”的影响,以增加群内粒子的多样性。随着迭代次数的增加,使c1线性递减,c2线性递增,从而加强了粒子向全局最优点的收敛能力:

c1 = c1i + k × (c1f - c1i) / kmax

c2 = c2i + k × (c2f - c2i) / kmax

其中,k为当前迭代次数;kmax是最大迭代数;c1i、c2i分别为c1、c2的初始值;c1f、c2f分别为c1、c2的最终值。

根据上述收敛性分析,在迭代过程中w值从1线性递减到0.4,参数c1和c2在满足c = c1 + c2 ≤ 4的条件下,有3种取值情况:

  1. c1和c2是常数且c1 = c2。表示“个体”与“群体”对粒子搜索过程的影响力相同
  2. c1和c2是对称的线性变化关系。即c1i = c2f且c2i = c1f,表示“个体”与“群体”对搜索过程起完全互补的作用,这是经典PSO的思想
  3. c1和c2是非对称的线性变化关系。即c1i ≠ c2f且c2i ≠ c1f,表示“个体”与“群体”对搜索过程具有不同程度的影响,这也是本文的改进PSO算法

综合以上分析,基于c1 = 2.5-0.5,c2 = 1.0-2.25 的非对称学习因子调节策略与文献[5]的对称调节以及学习因子固定取值的方法相比,均有较为明显的改善,表现出较好的全局寻优能力。

参考文献:毛开富,包广清,徐驰.基于非对称学习因子调节的粒子群优化算法[J].计算机工程,2010(19):188-190.

按照我们的符号就是:

这篇关于数学建模【对粒子群算法中惯性权重和学习因子的改进】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/798305

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert