数学建模【对粒子群算法中惯性权重和学习因子的改进】

2024-03-11 16:04

本文主要是介绍数学建模【对粒子群算法中惯性权重和学习因子的改进】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、改进原因

这是前面 数学建模【粒子群算法】 中的一部分,这里提到了w存在的一些问题,那么本篇介绍一些方法对w和因子进行一些改进,提高粒子群算法的效率和准确度。

二、改进方法

1.线性递减惯性权重

惯性权重w体现的是粒子继承先前的速度的能力,Shi,Y最先将惯性权重w引入到粒子群算法中,并分析指出一个较大的惯性权值有利于全局搜索,而一个较小的权值则更利于局部搜索。为了更好地平衡算法的全局搜索以及局部搜索能力,Shi,Y提出了线性递减惯性权重LDIW(Linear Decreasing Inertia Weight),公式如下:

其中d是当前迭代的次数,K是迭代总次数。

wstart一般取0.9,wend一般取0.4。与原来的相比,现在的惯性权重和迭代次数有关。

参考论文:Shi, Y. and Eberhart, R.C. (1999) Empirical Study of Particle Swarm Optimization. Proceedings of the 1999 Congress on Evolutionary Computation, Washington DC, 6-9 July 1999, 1945- 1950.

既然有线性递减惯性权重,那肯定也有非线性递减惯性权重。

在网上找到结果非常多,这里给出常用的两个:

2.自适应惯性权重

假设现在求最小值问题,那么:

一个较大的惯性权值有利于全局搜索,而一个较小的权值则更利于局部搜索。

假设现在一共五个粒子ABCDE,此时它们的适应度分别为1,2,3,4,5。取最大惯性权重为0.9,最小惯性权重为0.4。那么,这五个粒子的惯性权重应该为:0.4,0.65,0.9,0.9,0.9。适应度越小,说明距离最优解越近,此时更需要局部搜索;适应度越大,说明距离最优解越远,此时更需要全局搜索。

假设现在求最大值问题,那么:

一个较大的惯性权值有利于全局搜索,而一个较小的权值则更利于局部搜索。

假设现在一共五个粒子ABCDE,此时它们的适应度分别为1,2,3,4,5。取最大惯性权重为0.9,最小惯性权重为0.4 。那么,这五个粒子的惯性权重应该为:0.9,0.9,0.9,0.65,0.4。适应度越小,说明距离最优解越远,此时更需要全局搜索;适应度越大,说明距离最优解越近,此时更需要局部搜索。

3.随机惯性权重

最开始提出随机惯性权重的论文:Zhang L, Yu H, Hu S. A New Approach to Improve Particle Swarm Optimization[J]. lecture notes in computer science, 2003, 2723:134-139.

使用随机的惯性权重,可以避免在迭代前期局部搜索能力的不足;也可以避免在迭代后期全局搜索能力的不足。

后面有一个对随机惯性权重的改进。

参考文献:基于随机惯性权重的简化粒子群优化算法[J].计算机应用研究,2014, 031(002):361-363,391.

其中:μmin是随机惯性权重的最小值;μmax是随机惯性权重的最大值;rand()为[0, 1]均匀分布随机数;第三项中randn()为正态分布的随机数;σ(标准差)用来度量随机变量权重w与其数学期望(即均值)之间的偏离程度,该项是为了控制取值中的权重误差,使权重w有利于向期望权重方向进化,这样做的依据是正常情况下实验误差服从正态分布。

一般σ取0.2-0.5之间的一个数。

4.压缩因子法

个体学习因子c1和社会(群体)学习因子c2决定了粒子本身经验信息和其他粒子的经验信息对粒子运行轨迹的影响,其反映了粒子群之间的信息交流。设置c1较大的值,会使粒子过多地在自身的局部范围内搜索,而较大的c2的值,则又会促使粒子过早收敛到局部最优值。

为了有效地控制粒子的飞行速度,使算法达到全局搜索与局部搜索两者间的有效平衡,Clerc构造了引入收缩因子的PSO模型,采用了压缩因子,这种调整方法通过合适选取参数,可确保PS0算法的收敛性,并可取消对速度的边界限制。

参考文献:M. Clerc. The swarm and queen: towards a deterministic and adaptive particle swarm op-timization. Proc. Congress on Evolutionary Computation, Washington, DC,.Piscataway,NJ:IEEE Service Center (1999) 1951- 1957

压缩因子法中应用较多的个体学习因子c1和社会学习因子c2均取2.05,用我们自己的符号可以表示为:

惯性权重w = 0.9,速度更新公式为:

将c1r1看成c1即可,c2r2看成c2即可。

参考文献:Eberhart R C. Comparing inertia weights and constriction factors in optimization[C]// Proceedings of the 2000 IEEE Congress on Evolutionary Computation, La Jolla, CA. IEEE, 2000.

5.非对称学习因子法

在经典PSO算法中,由于在手优后期粒子缺之多样性,易过早收敛于局部极值,因此通过调节学习因子,在搜索初期使粒子进行大范围搜索,以期获得具有更好多样性的高质量粒子,尽可能摆脱局部极值的干扰。

学习因子c1和c2决定粒子个体经验信息和其他粒子经验信息对寻优轨迹的影响,反映了粒子之间的信息交换。设置较大的c1值,会使粒子过多的在局部搜索(这里的局部搜索指的是粒子会过多的在自身的局部范围内进行搜索,从全局来看实际上增大了搜索范围。可以想象成每个粒子各干各的事情,团队意识比较弱);反之,较大的c2值会使粒子过早收敛到局部最优值。因此,在算法搜索初期采用较大的c1值和较小的c2值,使粒子尽量发散到搜索空间即强调“个体独立意识”,而较少受到种群内其他粒子即“社会意识部分”的影响,以增加群内粒子的多样性。随着迭代次数的增加,使c1线性递减,c2线性递增,从而加强了粒子向全局最优点的收敛能力:

c1 = c1i + k × (c1f - c1i) / kmax

c2 = c2i + k × (c2f - c2i) / kmax

其中,k为当前迭代次数;kmax是最大迭代数;c1i、c2i分别为c1、c2的初始值;c1f、c2f分别为c1、c2的最终值。

根据上述收敛性分析,在迭代过程中w值从1线性递减到0.4,参数c1和c2在满足c = c1 + c2 ≤ 4的条件下,有3种取值情况:

  1. c1和c2是常数且c1 = c2。表示“个体”与“群体”对粒子搜索过程的影响力相同
  2. c1和c2是对称的线性变化关系。即c1i = c2f且c2i = c1f,表示“个体”与“群体”对搜索过程起完全互补的作用,这是经典PSO的思想
  3. c1和c2是非对称的线性变化关系。即c1i ≠ c2f且c2i ≠ c1f,表示“个体”与“群体”对搜索过程具有不同程度的影响,这也是本文的改进PSO算法

综合以上分析,基于c1 = 2.5-0.5,c2 = 1.0-2.25 的非对称学习因子调节策略与文献[5]的对称调节以及学习因子固定取值的方法相比,均有较为明显的改善,表现出较好的全局寻优能力。

参考文献:毛开富,包广清,徐驰.基于非对称学习因子调节的粒子群优化算法[J].计算机工程,2010(19):188-190.

按照我们的符号就是:

这篇关于数学建模【对粒子群算法中惯性权重和学习因子的改进】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/798305

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n