数学建模【对粒子群算法中惯性权重和学习因子的改进】

2024-03-11 16:04

本文主要是介绍数学建模【对粒子群算法中惯性权重和学习因子的改进】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、改进原因

这是前面 数学建模【粒子群算法】 中的一部分,这里提到了w存在的一些问题,那么本篇介绍一些方法对w和因子进行一些改进,提高粒子群算法的效率和准确度。

二、改进方法

1.线性递减惯性权重

惯性权重w体现的是粒子继承先前的速度的能力,Shi,Y最先将惯性权重w引入到粒子群算法中,并分析指出一个较大的惯性权值有利于全局搜索,而一个较小的权值则更利于局部搜索。为了更好地平衡算法的全局搜索以及局部搜索能力,Shi,Y提出了线性递减惯性权重LDIW(Linear Decreasing Inertia Weight),公式如下:

其中d是当前迭代的次数,K是迭代总次数。

wstart一般取0.9,wend一般取0.4。与原来的相比,现在的惯性权重和迭代次数有关。

参考论文:Shi, Y. and Eberhart, R.C. (1999) Empirical Study of Particle Swarm Optimization. Proceedings of the 1999 Congress on Evolutionary Computation, Washington DC, 6-9 July 1999, 1945- 1950.

既然有线性递减惯性权重,那肯定也有非线性递减惯性权重。

在网上找到结果非常多,这里给出常用的两个:

2.自适应惯性权重

假设现在求最小值问题,那么:

一个较大的惯性权值有利于全局搜索,而一个较小的权值则更利于局部搜索。

假设现在一共五个粒子ABCDE,此时它们的适应度分别为1,2,3,4,5。取最大惯性权重为0.9,最小惯性权重为0.4。那么,这五个粒子的惯性权重应该为:0.4,0.65,0.9,0.9,0.9。适应度越小,说明距离最优解越近,此时更需要局部搜索;适应度越大,说明距离最优解越远,此时更需要全局搜索。

假设现在求最大值问题,那么:

一个较大的惯性权值有利于全局搜索,而一个较小的权值则更利于局部搜索。

假设现在一共五个粒子ABCDE,此时它们的适应度分别为1,2,3,4,5。取最大惯性权重为0.9,最小惯性权重为0.4 。那么,这五个粒子的惯性权重应该为:0.9,0.9,0.9,0.65,0.4。适应度越小,说明距离最优解越远,此时更需要全局搜索;适应度越大,说明距离最优解越近,此时更需要局部搜索。

3.随机惯性权重

最开始提出随机惯性权重的论文:Zhang L, Yu H, Hu S. A New Approach to Improve Particle Swarm Optimization[J]. lecture notes in computer science, 2003, 2723:134-139.

使用随机的惯性权重,可以避免在迭代前期局部搜索能力的不足;也可以避免在迭代后期全局搜索能力的不足。

后面有一个对随机惯性权重的改进。

参考文献:基于随机惯性权重的简化粒子群优化算法[J].计算机应用研究,2014, 031(002):361-363,391.

其中:μmin是随机惯性权重的最小值;μmax是随机惯性权重的最大值;rand()为[0, 1]均匀分布随机数;第三项中randn()为正态分布的随机数;σ(标准差)用来度量随机变量权重w与其数学期望(即均值)之间的偏离程度,该项是为了控制取值中的权重误差,使权重w有利于向期望权重方向进化,这样做的依据是正常情况下实验误差服从正态分布。

一般σ取0.2-0.5之间的一个数。

4.压缩因子法

个体学习因子c1和社会(群体)学习因子c2决定了粒子本身经验信息和其他粒子的经验信息对粒子运行轨迹的影响,其反映了粒子群之间的信息交流。设置c1较大的值,会使粒子过多地在自身的局部范围内搜索,而较大的c2的值,则又会促使粒子过早收敛到局部最优值。

为了有效地控制粒子的飞行速度,使算法达到全局搜索与局部搜索两者间的有效平衡,Clerc构造了引入收缩因子的PSO模型,采用了压缩因子,这种调整方法通过合适选取参数,可确保PS0算法的收敛性,并可取消对速度的边界限制。

参考文献:M. Clerc. The swarm and queen: towards a deterministic and adaptive particle swarm op-timization. Proc. Congress on Evolutionary Computation, Washington, DC,.Piscataway,NJ:IEEE Service Center (1999) 1951- 1957

压缩因子法中应用较多的个体学习因子c1和社会学习因子c2均取2.05,用我们自己的符号可以表示为:

惯性权重w = 0.9,速度更新公式为:

将c1r1看成c1即可,c2r2看成c2即可。

参考文献:Eberhart R C. Comparing inertia weights and constriction factors in optimization[C]// Proceedings of the 2000 IEEE Congress on Evolutionary Computation, La Jolla, CA. IEEE, 2000.

5.非对称学习因子法

在经典PSO算法中,由于在手优后期粒子缺之多样性,易过早收敛于局部极值,因此通过调节学习因子,在搜索初期使粒子进行大范围搜索,以期获得具有更好多样性的高质量粒子,尽可能摆脱局部极值的干扰。

学习因子c1和c2决定粒子个体经验信息和其他粒子经验信息对寻优轨迹的影响,反映了粒子之间的信息交换。设置较大的c1值,会使粒子过多的在局部搜索(这里的局部搜索指的是粒子会过多的在自身的局部范围内进行搜索,从全局来看实际上增大了搜索范围。可以想象成每个粒子各干各的事情,团队意识比较弱);反之,较大的c2值会使粒子过早收敛到局部最优值。因此,在算法搜索初期采用较大的c1值和较小的c2值,使粒子尽量发散到搜索空间即强调“个体独立意识”,而较少受到种群内其他粒子即“社会意识部分”的影响,以增加群内粒子的多样性。随着迭代次数的增加,使c1线性递减,c2线性递增,从而加强了粒子向全局最优点的收敛能力:

c1 = c1i + k × (c1f - c1i) / kmax

c2 = c2i + k × (c2f - c2i) / kmax

其中,k为当前迭代次数;kmax是最大迭代数;c1i、c2i分别为c1、c2的初始值;c1f、c2f分别为c1、c2的最终值。

根据上述收敛性分析,在迭代过程中w值从1线性递减到0.4,参数c1和c2在满足c = c1 + c2 ≤ 4的条件下,有3种取值情况:

  1. c1和c2是常数且c1 = c2。表示“个体”与“群体”对粒子搜索过程的影响力相同
  2. c1和c2是对称的线性变化关系。即c1i = c2f且c2i = c1f,表示“个体”与“群体”对搜索过程起完全互补的作用,这是经典PSO的思想
  3. c1和c2是非对称的线性变化关系。即c1i ≠ c2f且c2i ≠ c1f,表示“个体”与“群体”对搜索过程具有不同程度的影响,这也是本文的改进PSO算法

综合以上分析,基于c1 = 2.5-0.5,c2 = 1.0-2.25 的非对称学习因子调节策略与文献[5]的对称调节以及学习因子固定取值的方法相比,均有较为明显的改善,表现出较好的全局寻优能力。

参考文献:毛开富,包广清,徐驰.基于非对称学习因子调节的粒子群优化算法[J].计算机工程,2010(19):188-190.

按照我们的符号就是:

这篇关于数学建模【对粒子群算法中惯性权重和学习因子的改进】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/798305

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]