UnityStandardAsset工程、源码分析_5_赛车游戏[AI控制]_AI机制

本文主要是介绍UnityStandardAsset工程、源码分析_5_赛车游戏[AI控制]_AI机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一章地址: UnityStandardAsset工程、源码分析_4_赛车游戏[玩家控制]_摄像机控制
在这里插入图片描述
前几章我们已经将赛车游戏的绝大多数机制分析过了,而Unity还提供了不同的操控模式——AI控制。正如其名,是由AI来代替玩家进行控制,车辆自动绕场地行驶。AI控制的场景大体与玩家控制的场景相似,所以重复的部分不再赘述,我们着重分析AI相关的机制。

AI控制

在这里插入图片描述
AI控制场景的车附着的脚本,与玩家控制的车辆有所不同。第一章的截图中,车辆上附着了CarUserControl脚本,用于读入玩家输入并传给CarController,但这里的车辆上没有挂载CarUserControl,取而代之的是CarAIControlWaypointProgressTracker。同时,在场景中也存在着如下对象:
在这里插入图片描述
Waypoints上挂载了WaypointCircuit
在这里插入图片描述
此外,在第一章中,我们也观察到有一个名为WaypointTargetObject的物体,当时只是简略的提了一下这是用于AI相关的物体。而在这章中,它却扮演了一个非常重要的角色。


接下来我们根据上述提到的各个脚本、物体,来完整地分析AI驾驶的实现原理。我们先从CarAIControl入手:

namespace UnityStandardAssets.Vehicles.Car
{[RequireComponent(typeof (CarController))]public class CarAIControl : MonoBehaviour{// 三种行为模式public enum BrakeCondition{// 一直加速,不减速NeverBrake,                 // the car simply accelerates at full throttle all the time.// 根据路径点之间的角度减速TargetDirectionDifference,  // the car will brake according to the upcoming change in direction of the target. Useful for route-based AI, slowing for corners.// 在即将到达路近点的时候减速TargetDistance,             // the car will brake as it approaches its target, regardless of the target's direction. Useful if you want the car to// head for a stationary target and come to rest when it arrives there.}// 这个脚本为车辆的控制提供了输入,就像玩家的输入一样// 就这样,这是真的在“驾驶”车辆,没有使用什么特殊的物理或者动画效果// This script provides input to the car controller in the same way that the user control script does.// As such, it is really 'driving' the car, with no special physics or animation tricks to make the car behave properly.// “闲逛”是用来让车辆变得更加像人类在操作,而不是机器在操作// 他能在驶向目标的时候轻微地改变速度和方向// "wandering" is used to give the cars a more human, less robotic feel. They can waver slightly// in speed and direction while driving towards their target.[SerializeField] [Range(0, 1)] private float m_CautiousSpeedFactor = 0.05f;               // percentage of max speed to use when being maximally cautious[SerializeField] [Range(0, 180)] private float m_CautiousMaxAngle = 50f;                  // angle of approaching corner to treat as warranting maximum caution[SerializeField] private float m_CautiousMaxDistance = 100f;                              // distance at which distance-based cautiousness begins[SerializeField] private float m_CautiousAngularVelocityFactor = 30f;                     // how cautious the AI should be when considering its own current angular velocity (i.e. easing off acceleration if spinning!)[SerializeField] private float m_SteerSensitivity = 0.05f;                                // how sensitively the AI uses steering input to turn to the desired direction[SerializeField] private float m_AccelSensitivity = 0.04f;                                // How sensitively the AI uses the accelerator to reach the current desired speed[SerializeField] private float m_BrakeSensitivity = 1f;                                   // How sensitively the AI uses the brake to reach the current desired speed[SerializeField] private float m_LateralWanderDistance = 3f;                              // how far the car will wander laterally towards its target[SerializeField] private float m_LateralWanderSpeed = 0.1f;                               // how fast the lateral wandering will fluctuate[SerializeField] [Range(0, 1)] private float m_AccelWanderAmount = 0.1f;                  // how much the cars acceleration will wander[SerializeField] private float m_AccelWanderSpeed = 0.1f;                                 // how fast the cars acceleration wandering will fluctuate[SerializeField] private BrakeCondition m_BrakeCondition = BrakeCondition.TargetDistance; // what should the AI consider when accelerating/braking?[SerializeField] private bool m_Driving;                                                  // whether the AI is currently actively driving or stopped.[SerializeField] private Transform m_Target;                                              // 'target' the target object to aim for.[SerializeField] private bool m_StopWhenTargetReached;                                    // should we stop driving when we reach the target?[SerializeField] private float m_ReachTargetThreshold = 2;                                // proximity to target to consider we 'reached' it, and stop driving.private float m_RandomPerlin;             // A random value for the car to base its wander on (so that AI cars don't all wander in the same pattern)private CarController m_CarController;    // Reference to actual car controller we are controllingprivate float m_AvoidOtherCarTime;        // time until which to avoid the car we recently collided withprivate float m_AvoidOtherCarSlowdown;    // how much to slow down due to colliding with another car, whilst avoidingprivate float m_AvoidPathOffset;          // direction (-1 or 1) in which to offset path to avoid other car, whilst avoidingprivate Rigidbody m_Rigidbody;private void Awake(){// 获得车辆的核心逻辑控件// get the car controller referencem_CarController = GetComponent<CarController>();// 车辆闲逛的随机种子// give the random perlin a random valuem_RandomPerlin = Random.value*100;m_Rigidbody = GetComponent<Rigidbody>();}private void FixedUpdate(){if (m_Target == null || !m_Driving){// 没有在驾驶或者没有目标时不应该移动,使用手刹来停下车辆// Car should not be moving,// use handbrake to stopm_CarController.Move(0, 0, -1f, 1f);}else{// 正朝向,如果速度大于最大速度的10%,则为速度方向,否则为模型方向Vector3 fwd = transform.forward;if (m_Rigidbody.velocity.magnitude > m_CarController.MaxSpeed*0.1f){fwd = m_Rigidbody.velocity;}float desiredSpeed = m_CarController.MaxSpeed;// 现在是时候决定我们是否该减速了// now it's time to decide if we should be slowing down...switch (m_BrakeCondition){// 根据路径点角度限制速度case BrakeCondition.TargetDirectionDifference:{// the car will brake according to the upcoming change in direction of the target. Useful for route-based AI, slowing for corners.// 先计算我们当前朝向与路径点的朝向之间的角度// check out the angle of our target compared to the current direction of the carfloat approachingCornerAngle = Vector3.Angle(m_Target.forward, fwd);// 也考虑一下我们当前正在转向的角速度// also consider the current amount we're turning, multiplied up and then compared in the same way as an upcoming corner anglefloat spinningAngle = m_Rigidbody.angularVelocity.magnitude*m_CautiousAngularVelocityFactor;// 角度越大越需要谨慎// if it's different to our current angle, we need to be cautious (i.e. slow down) a certain amountfloat cautiousnessRequired = Mathf.InverseLerp(0, m_CautiousMaxAngle,Mathf.Max(spinningAngle,approachingCornerAngle));// 获得需要的速度,cautiousnessRequired越大desiredSpeed越小desiredSpeed = Mathf.Lerp(m_CarController.MaxSpeed, m_CarController.MaxSpeed*m_CautiousSpeedFactor,cautiousnessRequired);break;}// 根据路近点的距离限制速度case BrakeCondition.TargetDistance:{// the car will brake as it approaches its target, regardless of the target's direction. Useful if you want the car to// head for a stationary target and come to rest when it arrives there.// 计算到达目标与自身之间的距离向量// check out the distance to targetVector3 delta = m_Target.position - transform.position;// 根据最大谨慎距离和当前距离计算距离谨慎因子float distanceCautiousFactor = Mathf.InverseLerp(m_CautiousMaxDistance, 0, delta.magnitude);// 也考虑一下我们当前正在转向的角速度// also consider the current amount we're turning, multiplied up and then compared in the same way as an upcoming corner anglefloat spinningAngle = m_Rigidbody.angularVelocity.magnitude*m_CautiousAngularVelocityFactor;// 角度越大越需要谨慎// if it's different to our current angle, we need to be cautious (i.e. slow down) a certain amountfloat cautiousnessRequired = Mathf.Max(Mathf.InverseLerp(0, m_CautiousMaxAngle, spinningAngle), distanceCautiousFactor);// 获得需要的速度,谨慎程度越大desiredSpeed越小desiredSpeed = Mathf.Lerp(m_CarController.MaxSpeed, m_CarController.MaxSpeed*m_CautiousSpeedFactor,cautiousnessRequired);break;}// 无限加速模式不需要谨慎,desiredSpeed取m_CarController.MaxSpeed,也就是不作减小case BrakeCondition.NeverBrake:break;}// 撞到其他车辆时的逃避行动// Evasive action due to collision with other cars:// 目标偏移坐标始于真正的目标坐标// our target position starts off as the 'real' target positionVector3 offsetTargetPos = m_Target.position;// 如果我们正在为了避免和其他车卡在一起而采取回避行动// if are we currently taking evasive action to prevent being stuck against another car:if (Time.time < m_AvoidOtherCarTime){// 如果有必要的话就减速(发生碰撞的时候我们在其他车后面)// slow down if necessary (if we were behind the other car when collision occured)desiredSpeed *= m_AvoidOtherCarSlowdown;// 转向其他方向// and veer towards the side of our path-to-target that is away from the other caroffsetTargetPos += m_Target.right*m_AvoidPathOffset;}else{// 无需采取回避行动,我们就可以沿着路径随机闲逛,避免AI驾驶车辆的时候看起来太死板// no need for evasive action, we can just wander across the path-to-target in a random way,// which can help prevent AI from seeming too uniform and robotic in their drivingoffsetTargetPos += m_Target.right*(Mathf.PerlinNoise(Time.time*m_LateralWanderSpeed, m_RandomPerlin)*2 - 1)*m_LateralWanderDistance;}// 使用不同的灵敏度,取决于是在加速还是减速// use different sensitivity depending on whether accelerating or braking:float accelBrakeSensitivity = (desiredSpeed < m_CarController.CurrentSpeed)? m_BrakeSensitivity: m_AccelSensitivity;// 根据灵敏度决定真正的 加速/减速 输入,clamp到[-1,1]// decide the actual amount of accel/brake input to achieve desired speed.float accel = Mathf.Clamp((desiredSpeed - m_CarController.CurrentSpeed)*accelBrakeSensitivity, -1, 1);// 利用柏林噪声来使加速度变得随机,以此来让AI的操作更像人类,不过我没太看懂为什么要这么算// add acceleration 'wander', which also prevents AI from seeming too uniform and robotic in their driving// i.e. increasing the accel wander amount can introduce jostling and bumps between AI cars in a raceaccel *= (1 - m_AccelWanderAmount) +(Mathf.PerlinNoise(Time.time*m_AccelWanderSpeed, m_RandomPerlin)*m_AccelWanderAmount);// 将之前计算过的偏移的目标坐标转换为本地坐标// calculate the local-relative position of the target, to steer towardsVector3 localTarget = transform.InverseTransformPoint(offsetTargetPos);// 计算绕y轴的本地目标角度// work out the local angle towards the targetfloat targetAngle = Mathf.Atan2(localTarget.x, localTarget.z)*Mathf.Rad2Deg;// 获得为了转向目标所需要的角度// get the amount of steering needed to aim the car towards the targetfloat steer = Mathf.Clamp(targetAngle*m_SteerSensitivity, -1, 1)*Mathf.Sign(m_CarController.CurrentSpeed);// 使用这些数据调用Move方法// feed input to the car controller.m_CarController.Move(steer, accel, accel, 0f);// 如果过于接近目标,停止驾驶// if appropriate, stop driving when we're close enough to the target.if (m_StopWhenTargetReached && localTarget.magnitude < m_ReachTargetThreshold){m_Driving = false;}}}private void OnCollisionStay(Collision col){// 检测与其他车辆的碰撞,并为此采取回避行动// detect collision against other cars, so that we can take evasive actionif (col.rigidbody != null){var otherAI = col.rigidbody.GetComponent<CarAIControl>();// 与之发生碰撞的物体上需要同样挂载有CarAIControl,否则不采取行动if (otherAI != null){// 我们会在1秒内采取回避行动// we'll take evasive action for 1 secondm_AvoidOtherCarTime = Time.time + 1;// 那么谁在前面?// but who's in front?...if (Vector3.Angle(transform.forward, otherAI.transform.position - transform.position) < 90){// 对方在前面,我们就需要减速// the other ai is in front, so it is only good manners that we ought to brake...m_AvoidOtherCarSlowdown = 0.5f;}else{// 我们在前面,无需减速// we're in front! ain't slowing down for anybody...m_AvoidOtherCarSlowdown = 1;}// 两辆车都需要采取回避行动,驶向偏离目标的方向,远离对方// both cars should take evasive action by driving along an offset from the path centre,// away from the other carvar otherCarLocalDelta = transform.InverseTransformPoint(otherAI.transform.position);float otherCarAngle = Mathf.Atan2(otherCarLocalDelta.x, otherCarLocalDelta.z);m_AvoidPathOffset = m_LateralWanderDistance*-Mathf.Sign(otherCarAngle);}}}public void SetTarget(Transform target){m_Target = target;m_Driving = true;}}
}

Unity自身写的注释也很详细,比之其他脚本而言完全不同,可能不是由同一个开发者制作的。
可见,这个脚本的主要功能,就是根据自身的状态(速度,角速度,驾驶模式),以及很重要的m_Target物体等数据调用Move方法,来实现车辆状态的更新。关于算法的实现,Unity和我的注释已经写的很清楚了,那么现在最主要的问题是,那个m_Target是什么?从上面的算法可以看出,我们的车辆是一直在“追赶”这个m_Target的,它不可能一直处于静止,否则车辆也不会启动了,那么它是怎样移动的?这个问题的答案潜藏在WaypointProgressTracker中:

namespace UnityStandardAssets.Utility
{public class WaypointProgressTracker : MonoBehaviour{// 这个脚本适用于任何的想要跟随一系列路径点的物体// This script can be used with any object that is supposed to follow a// route marked out by waypoints.// 这个脚本管理向前看的数量?(就是管理路径点吧)// This script manages the amount to look ahead along the route,// and keeps track of progress and laps.[SerializeField] private WaypointCircuit circuit; // A reference to the waypoint-based route we should follow[SerializeField] private float lookAheadForTargetOffset = 5;// The offset ahead along the route that the we will aim for[SerializeField] private float lookAheadForTargetFactor = .1f;// A multiplier adding distance ahead along the route to aim for, based on current speed[SerializeField] private float lookAheadForSpeedOffset = 10;// The offset ahead only the route for speed adjustments (applied as the rotation of the waypoint target transform)[SerializeField] private float lookAheadForSpeedFactor = .2f;// A multiplier adding distance ahead along the route for speed adjustments[SerializeField] private ProgressStyle progressStyle = ProgressStyle.SmoothAlongRoute;// whether to update the position smoothly along the route (good for curved paths) or just when we reach each waypoint.[SerializeField] private float pointToPointThreshold = 4;// proximity to waypoint which must be reached to switch target to next waypoint : only used in PointToPoint mode.public enum ProgressStyle{SmoothAlongRoute,PointToPoint,}// these are public, readable by other objects - i.e. for an AI to know where to head!public WaypointCircuit.RoutePoint targetPoint { get; private set; }public WaypointCircuit.RoutePoint speedPoint { get; private set; }public WaypointCircuit.RoutePoint progressPoint { get; private set; }public Transform target;private float progressDistance; // The progress round the route, used in smooth mode.private int progressNum; // the current waypoint number, used in point-to-point mode.private Vector3 lastPosition; // Used to calculate current speed (since we may not have a rigidbody component)private float speed; // current speed of this object (calculated from delta since last frame)// setup script propertiesprivate void Start(){// 我们使用一个物体来表示应当瞄准的点,并且这个点考虑了即将到来的速度变化// 这允许这个组件跟AI交流,不要求进一步的依赖// we use a transform to represent the point to aim for, and the point which// is considered for upcoming changes-of-speed. This allows this component// to communicate this information to the AI without requiring further dependencies.// 你可以手动创造一个物体并把它付给这个组件和AI,如此这个组件就可以更新它,AI也可以从他身上读取数据// You can manually create a transform and assign it to this component *and* the AI,// then this component will update it, and the AI can read it.if (target == null){target = new GameObject(name + " Waypoint Target").transform;}Reset();}// 把对象重置为合适的值// reset the object to sensible valuespublic void Reset(){progressDistance = 0;progressNum = 0;if (progressStyle == ProgressStyle.PointToPoint){target.position = circuit.Waypoints[progressNum].position;target.rotation = circuit.Waypoints[progressNum].rotation;}}private void Update(){if (progressStyle == ProgressStyle.SmoothAlongRoute){// 平滑路径点模式// 确定我们应当瞄准的位置// 这与当前的进度位置不同,这是两个路近的中间量// 我们使用插值来简单地平滑速度// determine the position we should currently be aiming for// (this is different to the current progress position, it is a a certain amount ahead along the route)// we use lerp as a simple way of smoothing out the speed over time.if (Time.deltaTime > 0){speed = Mathf.Lerp(speed, (lastPosition - transform.position).magnitude/Time.deltaTime,Time.deltaTime);}// 根据路程向前偏移一定距离,获取路径点target.position =circuit.GetRoutePoint(progressDistance + lookAheadForTargetOffset + lookAheadForTargetFactor*speed).position;// 路径点方向调整。这里重复计算了,为什么不缓存?target.rotation =Quaternion.LookRotation(circuit.GetRoutePoint(progressDistance + lookAheadForSpeedOffset + lookAheadForSpeedFactor*speed).direction);// 获取未偏移的路径点// get our current progress along the routeprogressPoint = circuit.GetRoutePoint(progressDistance);// 车辆的移动超过路径点的话,将路径点前移Vector3 progressDelta = progressPoint.position - transform.position;if (Vector3.Dot(progressDelta, progressPoint.direction) < 0){progressDistance += progressDelta.magnitude*0.5f;}// 记录位置lastPosition = transform.position;}else{// 点对点模式,如果足够近的话就增加路程// point to point mode. Just increase the waypoint if we're close enough:// 距离小于阈值,就将路径点移动到下一个Vector3 targetDelta = target.position - transform.position;if (targetDelta.magnitude < pointToPointThreshold){progressNum = (progressNum + 1)%circuit.Waypoints.Length;}// 设置路径对象的位置和旋转方向target.position = circuit.Waypoints[progressNum].position;target.rotation = circuit.Waypoints[progressNum].rotation;// 同平滑路径点模式一样进行路程计算// get our current progress along the routeprogressPoint = circuit.GetRoutePoint(progressDistance);Vector3 progressDelta = progressPoint.position - transform.position;if (Vector3.Dot(progressDelta, progressPoint.direction) < 0){progressDistance += progressDelta.magnitude;}lastPosition = transform.position;}}private void OnDrawGizmos(){// 画Gizmosif (Application.isPlaying){Gizmos.color = Color.green;Gizmos.DrawLine(transform.position, target.position);   // 车辆与路径对象的连线Gizmos.DrawWireSphere(circuit.GetRoutePosition(progressDistance), 1);   // 在平滑路径点上画球体Gizmos.color = Color.yellow;Gizmos.DrawLine(target.position, target.position + target.forward); // 画出路径对象的朝向}}}
}

可见这个脚本的主要目的就是更新target的状态,这个target就是之前提到的m_Target,也是场景中一直都没有用上的WaypointTargetObject。问题又来了,这个脚本是根据什么来更新target的状态的?是circuit.GetRoutePoint()。那这个东西又是什么?我们来看看circuit的类型,就能得到答案:

namespace UnityStandardAssets.Utility
{public class WaypointCircuit : MonoBehaviour{// 管理路径点的类,主要功能是根据路径值获取在闭合路径上的路径点public WaypointList waypointList = new WaypointList();[SerializeField] private bool smoothRoute = true;private int numPoints;private Vector3[] points;private float[] distances;public float editorVisualisationSubsteps = 100;public float Length { get; private set; }public Transform[] Waypoints{get { return waypointList.items; }}//this being here will save GC allocsprivate int p0n;private int p1n;private int p2n;private int p3n;private float i;private Vector3 P0;private Vector3 P1;private Vector3 P2;private Vector3 P3;// Use this for initializationprivate void Awake(){if (Waypoints.Length > 1){// 缓存路径点和路程CachePositionsAndDistances();}numPoints = Waypoints.Length;}public RoutePoint GetRoutePoint(float dist){// 计算插值后的路径点和他的方向// position and directionVector3 p1 = GetRoutePosition(dist);Vector3 p2 = GetRoutePosition(dist + 0.1f);Vector3 delta = p2 - p1;return new RoutePoint(p1, delta.normalized);}public Vector3 GetRoutePosition(float dist){int point = 0;// 获取一周的长度if (Length == 0){Length = distances[distances.Length - 1];}// 把dist规定在[0,Length]内dist = Mathf.Repeat(dist, Length);// 从起点数起,寻找dist所在的路段while (distances[point] < dist){++point;}// 获得距离dist最近的两个路径点// get nearest two points, ensuring points wrap-around start & end of circuitp1n = ((point - 1) + numPoints)%numPoints;p2n = point;// 获得两点距离间的百分值// found point numbers, now find interpolation value between the two middle pointsi = Mathf.InverseLerp(distances[p1n], distances[p2n], dist);if (smoothRoute){// 使用平滑catmull-rom曲线// smooth catmull-rom calculation between the two relevant points// 再获得最近的两个点,一共四个,用于计算catmull-rom曲线// get indices for the surrounding 2 points, because// four points are required by the catmull-rom functionp0n = ((point - 2) + numPoints)%numPoints;p3n = (point + 1)%numPoints;// 这里没太懂,似乎是只有三个路径点时,计算出的两个新路径点会重合// 2nd point may have been the 'last' point - a dupe of the first,// (to give a value of max track distance instead of zero)// but now it must be wrapped back to zero if that was the case.p2n = p2n%numPoints;P0 = points[p0n];P1 = points[p1n];P2 = points[p2n];P3 = points[p3n];// 计算catmull-rom曲线// 为什么这里的i值时1、2号点的百分值?为什么不是0、3号点的?return CatmullRom(P0, P1, P2, P3, i);}else{// simple linear lerp between the two points:p1n = ((point - 1) + numPoints)%numPoints;p2n = point;return Vector3.Lerp(points[p1n], points[p2n], i);}}private Vector3 CatmullRom(Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float i){// 魔幻代码,计算catmull-rom曲线// (其实google一下就有公式了)// comments are no use here... it's the catmull-rom equation.// Un-magic this, lord vector!return 0.5f *((2*p1) + (-p0 + p2)*i + (2*p0 - 5*p1 + 4*p2 - p3)*i*i +(-p0 + 3*p1 - 3*p2 + p3)*i*i*i);}private void CachePositionsAndDistances(){// 把每个点的坐标和到达某点的总距离转换成数组// 距离数组中的值表示从起点到达第n个路径点走过的路程,最后一个为起点,路程为一周的路程而不是0// transfer the position of each point and distances between points to arrays for// speed of lookup at runtimepoints = new Vector3[Waypoints.Length + 1];distances = new float[Waypoints.Length + 1];float accumulateDistance = 0;for (int i = 0; i < points.Length; ++i){var t1 = Waypoints[(i)%Waypoints.Length];var t2 = Waypoints[(i + 1)%Waypoints.Length];if (t1 != null && t2 != null){Vector3 p1 = t1.position;Vector3 p2 = t2.position;points[i] = Waypoints[i%Waypoints.Length].position;distances[i] = accumulateDistance;accumulateDistance += (p1 - p2).magnitude;}}}private void OnDrawGizmos(){DrawGizmos(false);}private void OnDrawGizmosSelected(){DrawGizmos(true);}private void DrawGizmos(bool selected){waypointList.circuit = this;if (Waypoints.Length > 1){numPoints = Waypoints.Length;CachePositionsAndDistances();Length = distances[distances.Length - 1];Gizmos.color = selected ? Color.yellow : new Color(1, 1, 0, 0.5f);Vector3 prev = Waypoints[0].position;if (smoothRoute){for (float dist = 0; dist < Length; dist += Length/editorVisualisationSubsteps){Vector3 next = GetRoutePosition(dist + 1);Gizmos.DrawLine(prev, next);prev = next;}Gizmos.DrawLine(prev, Waypoints[0].position);}else{for (int n = 0; n < Waypoints.Length; ++n){Vector3 next = Waypoints[(n + 1)%Waypoints.Length].position;Gizmos.DrawLine(prev, next);prev = next;}}}}[Serializable]public class WaypointList{public WaypointCircuit circuit;public Transform[] items = new Transform[0];}// 路径点结构体public struct RoutePoint{public Vector3 position;public Vector3 direction;public RoutePoint(Vector3 position, Vector3 direction){this.position = position;this.direction = direction;}}}
}

这个类所使用的数据来自场景中的Waypoints对象及其子对象,并且这个类就是挂载在Waypoints上的。那么事情就很明了了:

  1. 在场景中定义一系列空物体,他们有着规律的坐标,能够组成一圈闭合的路径,将其赋值给WaypointCircuit
  2. WaypointCircuit根据这些数据进行缓存,将他们的坐标和路程转换成数组,方便计算
  3. WaypointProgressTracker调用WaypointCircuitGetRoutePoint方法以及它的公开属性计算并更新WaypointTargetObject的坐标
  4. CarAIControl使用WaypointTargetObject的坐标和车辆自身数据调用CarControllerMove方法更新车辆数据

一条完整的AI逻辑链,从数据到决策再到数据,就分析完成了。算法的实现我同Unity的注释一起清楚地标识在代码中。此外还有一些Editor和Gizmos的代码,由于这些代码我运行的时候还在报数组越界的Error,我也不想分析了,有兴趣的话可以自己去AssetStore下载,或是克隆我包含了注释的Git仓库:https://github.com/t61789/StandardAssetWithAnnotation

赛车游戏场景到这里就告一段落了,下一章分析第三人称场景或者第一人称场景吧,看心情。

这篇关于UnityStandardAsset工程、源码分析_5_赛车游戏[AI控制]_AI机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/794731

相关文章

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实