吴恩达机器学习-可选实验:使用ScikitLearn进行线性回归(Linear Regression using Scikit-Learn)

本文主要是介绍吴恩达机器学习-可选实验:使用ScikitLearn进行线性回归(Linear Regression using Scikit-Learn),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 实验一
    • 目标
    • 工具
    • 梯度下降
      • 加载数据集
      • 缩放/规范化训练数据
      • 创建并拟合回归模型
      • 查看参数
      • 作出预测
      • 绘制结果
    • 恭喜
  • 实验二
    • 目标
    • 工具
    • 线性回归,闭式解
      • 加载数据集
      • 创建并拟合模型
      • 查看参数
      • 作出预测
    • 第二个例子
    • 恭喜

有一个开源的、商业上可用的机器学习工具包,叫做scikit-learn。这个工具包包含了你将在本课程中使用的许多算法的实现。

实验一

目标

在本实验中,你将:利用scikit-learn实现使用梯度下降的线性回归

工具

您将使用scikit-learn中的函数以及matplotlib和NumPy。

import numpy as np
np.set_printoptions(precision=2)
from sklearn.linear_model import LinearRegression, SGDRegressor
from sklearn.preprocessing import StandardScaler
from lab_utils_multi import  load_house_data
import matplotlib.pyplot as plt
dlblue = '#0096ff'; dlorange = '#FF9300'; dldarkred='#C00000'; dlmagenta='#FF40FF'; dlpurple='#7030A0'; 
plt.style.use('./deeplearning.mplstyle')

np.set_printoptions(precision=2) 的作用是告诉 NumPy 在打印数组时只保留浮点数的两位小数。

梯度下降

Scikit-learn有一个梯度下降回归模型sklearn.linear_model.SGDRegressor。与之前的梯度下降实现一样,该模型在规范化输入时表现最好。sklearn预处理。StandardScaler将执行z-score归一化在以前的实验室。这里它被称为“标准分数”。

加载数据集

X_train, y_train = load_house_data()
X_features = ['size(sqft)','bedrooms','floors','age']

缩放/规范化训练数据

scaler = StandardScaler()
X_norm = scaler.fit_transform(X_train)
print(f"Peak to Peak range by column in Raw        X:{np.ptp(X_train,axis=0)}")   
print(f"Peak to Peak range by column in Normalized X:{np.ptp(X_norm,axis=0)}")

在这里插入图片描述

创建并拟合回归模型

sgdr = SGDRegressor(max_iter=1000)
sgdr.fit(X_norm, y_train)
print(sgdr)
print(f"number of iterations completed: {sgdr.n_iter_}, number of weight updates: {sgdr.t_}")

这段代码使用了 SGDRegressor 类来进行线性回归模型的训练和预测。
首先,通过 SGDRegressor(max_iter=1000) 创建了一个随机梯度下降(SGD)回归器对象 sgdr,并设置最大迭代次数为 1000。
然后,使用 sgdr.fit(X_norm, y_train) 对模型进行拟合,其中 X_norm 是经过标准化处理后的特征数据,y_train 是对应的目标变量。
接着,通过 print(sgdr) 打印出 sgdr 对象的相关信息,包括模型参数和超参数等。
最后,使用 f-string 格式化字符串,打印出训练完成的迭代次数 sgdr.n_iter_ 和权重更新次数 sgdr.t_

查看参数

注意,参数与规范化的输入数据相关联。拟合参数与之前使用该数据的实验室中发现的非常接近。

b_norm = sgdr.intercept_
w_norm = sgdr.coef_
print(f"model parameters:                   w: {w_norm}, b:{b_norm}")
print(f"model parameters from previous lab: w: [110.56 -21.27 -32.71 -37.97], b: 363.16")

在这里插入图片描述

作出预测

预测训练数据的目标。同时使用预测例程并使用w和b进行计算。

# make a prediction using sgdr.predict()
y_pred_sgd = sgdr.predict(X_norm)
# make a prediction using w,b. 
y_pred = np.dot(X_norm, w_norm) + b_norm  
print(f"prediction using np.dot() and sgdr.predict match: {(y_pred == y_pred_sgd).all()}")print(f"Prediction on training set:\n{y_pred[:4]}" )
print(f"Target values \n{y_train[:4]}")

在这里插入图片描述

绘制结果

让我们绘制预测值与目标值的对比图。

# plot predictions and targets vs original features    
fig,ax=plt.subplots(1,4,figsize=(12,3),sharey=True)
for i in range(len(ax)):ax[i].scatter(X_train[:,i],y_train, label = 'target')ax[i].set_xlabel(X_features[i])ax[i].scatter(X_train[:,i],y_pred,color=dlorange, label = 'predict')
ax[0].set_ylabel("Price"); ax[0].legend();
fig.suptitle("target versus prediction using z-score normalized model")
plt.show()

在这里插入图片描述

恭喜

在这个实验中,你:利用开源机器学习工具包scikit-learn使用该工具包中的梯度下降和特征归一化实现线性回归

实验二

目标

在本实验中,你将:利用scikit-learn实现基于正态方程的近似解线性回归

工具

您将使用scikit-learn中的函数以及matplotlib和NumPy

import numpy as np
np.set_printoptions(precision=2)
from sklearn.linear_model import LinearRegression, SGDRegressor
from sklearn.preprocessing import StandardScaler
from lab_utils_multi import  load_house_data
import matplotlib.pyplot as plt
dlblue = '#0096ff'; dlorange = '#FF9300'; dldarkred='#C00000'; dlmagenta='#FF40FF'; dlpurple='#7030A0'; 
plt.style.use('./deeplearning.mplstyle')

线性回归,闭式解

Scikit-learn具有线性回归模型,实现了封闭形式的线性回归。让我们使用早期实验室的数据——一个1000平方英尺的房子卖了30万美元,一个2000平方英尺的房子卖了50万美元。
在这里插入图片描述

加载数据集

X_train = np.array([1.0, 2.0])   #features
y_train = np.array([300, 500])   #target value

创建并拟合模型

下面的代码使用scikit-learn执行回归。第一步创建一个回归对象。第二步使用与对象相关的方法之一fit。这将执行回归,将参数拟合到输入数据。该工具包需要一个二维X矩阵。

linear_model = LinearRegression()
#X must be a 2-D Matrix
linear_model.fit(X_train.reshape(-1, 1), y_train) 

在这里插入图片描述

查看参数

在scikit-learn中,w和b参数被称为“系数”和“截距”

b = linear_model.intercept_
w = linear_model.coef_
print(f"w = {w:}, b = {b:0.2f}")
print(f"'manual' prediction: f_wb = wx+b : {1200*w + b}")

在这里插入图片描述

作出预测

调用predict函数生成预测。

y_pred = linear_model.predict(X_train.reshape(-1, 1))print("Prediction on training set:", y_pred)X_test = np.array([[1200]])
print(f"Prediction for 1200 sqft house: ${linear_model.predict(X_test)[0]:0.2f}")

在这里插入图片描述

第二个例子

第二个例子来自早期的一个具有多个特征的实验。最终的参数值和预测非常接近该实验室非标准化“长期”的结果。这种不正常的运行需要几个小时才能产生结果,而这几乎是瞬间的。封闭形式的解决方案在诸如此类的较小数据集上工作得很好,但在较大的数据集上可能需要计算。

封闭形式的解不需要规范化

# load the dataset
X_train, y_train = load_house_data()
X_features = ['size(sqft)','bedrooms','floors','age']
linear_model = LinearRegression()
linear_model.fit(X_train, y_train) 

在这里插入图片描述

b = linear_model.intercept_
w = linear_model.coef_
print(f"w = {w:}, b = {b:0.2f}")

在这里插入图片描述
这里的权重1和权重4,相对于权重2和权重3太小,不知道为什么这里不舍去

print(f"Prediction on training set:\n {linear_model.predict(X_train)[:4]}" )
print(f"prediction using w,b:\n {(X_train @ w + b)[:4]}")
print(f"Target values \n {y_train[:4]}")x_house = np.array([1200, 3,1, 40]).reshape(-1,4)
x_house_predict = linear_model.predict(x_house)[0]
print(f" predicted price of a house with 1200 sqft, 3 bedrooms, 1 floor, 40 years old = ${x_house_predict*1000:0.2f}")

在这里插入图片描述

恭喜

在这个实验中,你:利用开源机器学习工具包scikit-learn使用该工具包中的接近形式的解决方案实现线性回归

这篇关于吴恩达机器学习-可选实验:使用ScikitLearn进行线性回归(Linear Regression using Scikit-Learn)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/792880

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学