基于YOLO开发构建红外场景下无人机航拍车辆实例分割检测识别分析系统

本文主要是介绍基于YOLO开发构建红外场景下无人机航拍车辆实例分割检测识别分析系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在我之前的博客中关于车辆检测、无人机航拍车辆检测、遥感车辆检测计数等都有实践性质的文章,感兴趣的话可以看下:

《基于目标检测的无人机航拍场景下小目标检测实践》

《基于YOLOv6m目标检测模型开发构建大雾天气下行人车辆检测识别分析系统》

《基于目标检测实现遥感场景下的车辆检测计数》

这里也是在做车辆相关的检测识别,只不过有两个不同点:

  1. 场景不同,这里的场景为红外场景下由无人机航拍获取的数据

  1. 目的效果不同,这里主要是开发构建车辆实例分割识别模型

首先看下效果图:

接下来看下数据集:

实例标注数据内容如下:

0 0.175 0.17415730337078653 0.24047619047619048 0.17275280898876405 0.23809523809523808 0.20224719101123595 0.17261904761904762 0.20365168539325842
0 0.1869047619047619 0.2148876404494382 0.25476190476190474 0.21207865168539325 0.25 0.2443820224719101 0.1880952380952381 0.24859550561797752
0 0.18571428571428572 0.2612359550561798 0.25476190476190474 0.25702247191011235 0.2571428571428571 0.2893258426966292 0.18333333333333332 0.29353932584269665
0 0.19166666666666668 0.30337078651685395 0.26785714285714285 0.300561797752809 0.26785714285714285 0.3342696629213483 0.19285714285714287 0.3342696629213483
0 0.2 0.44241573033707865 0.2654761904761905 0.4311797752808989 0.2726190476190476 0.45646067415730335 0.2011904761904762 0.4705056179775281
0 0.20476190476190476 0.48314606741573035 0.2726190476190476 0.4803370786516854 0.2785714285714286 0.5140449438202247 0.20357142857142857 0.5126404494382022
0 0.544047619047619 0.8286516853932584 0.6059523809523809 0.8286516853932584 0.6071428571428571 0.8623595505617978 0.5464285714285714 0.8595505617977528
0 0.5333333333333333 0.7724719101123596 0.6035714285714285 0.7724719101123596 0.6047619047619047 0.8047752808988764 0.5380952380952381 0.8089887640449438
0 0.5357142857142857 0.7219101123595506 0.611904761904762 0.7176966292134831 0.6142857142857143 0.7584269662921348 0.5392857142857143 0.7626404494382022
0 0.5321428571428571 0.6797752808988764 0.6 0.6783707865168539 0.6035714285714285 0.7120786516853933 0.5357142857142857 0.7176966292134831
0 0.5297619047619048 0.6376404494382022 0.5988095238095238 0.6376404494382022 0.5976190476190476 0.672752808988764 0.530952380952381 0.6713483146067416
0 0.5333333333333333 0.523876404494382 0.5928571428571429 0.523876404494382 0.594047619047619 0.5519662921348315 0.5333333333333333 0.5603932584269663
0 0.5297619047619048 0.4789325842696629 0.5916666666666667 0.4789325842696629 0.594047619047619 0.5098314606741573 0.5297619047619048 0.5154494382022472
0 0.5226190476190476 0.43820224719101125 0.5928571428571429 0.43820224719101125 0.5928571428571429 0.4705056179775281 0.5238095238095238 0.47331460674157305
0 0.5226190476190476 0.3946629213483146 0.5976190476190476 0.3960674157303371 0.5988095238095238 0.42837078651685395 0.5226190476190476 0.43820224719101125
0 0.5202380952380953 0.35252808988764045 0.5952380952380952 0.34691011235955055 0.5952380952380952 0.3848314606741573 0.5202380952380953 0.38764044943820225
0 0.5190476190476191 0.24719101123595505 0.5833333333333334 0.24578651685393257 0.5833333333333334 0.2808988764044944 0.5214285714285715 0.2808988764044944
0 0.5142857142857142 0.199438202247191 0.5869047619047619 0.2050561797752809 0.5857142857142857 0.23735955056179775 0.5178571428571429 0.2401685393258427
0 0.5154761904761904 0.15730337078651685 0.5833333333333334 0.1544943820224719 0.5857142857142857 0.1896067415730337 0.5107142857142857 0.1952247191011236
0 0.7047619047619048 0.300561797752809 0.7761904761904762 0.2991573033707865 0.7797619047619048 0.3300561797752809 0.7083333333333334 0.3342696629213483
0 0.6976190476190476 0.34269662921348315 0.7726190476190476 0.34129213483146065 0.7761904761904762 0.37219101123595505 0.6988095238095238 0.3806179775280899
0 0.7011904761904761 0.38764044943820225 0.7797619047619048 0.3848314606741573 0.7785714285714286 0.41713483146067415 0.7071428571428572 0.42696629213483145
0 0.6904761904761905 0.4339887640449438 0.7607142857142857 0.42837078651685395 0.763095238095238 0.46207865168539325 0.6928571428571428 0.4648876404494382
0 0.7023809523809523 0.577247191011236 0.7797619047619048 0.5674157303370787 0.7821428571428571 0.6025280898876404 0.705952380952381 0.6123595505617978
0 0.6988095238095238 0.6460674157303371 0.7773809523809524 0.6348314606741573 0.7821428571428571 0.6699438202247191 0.7035714285714286 0.6769662921348315
0 0.7226190476190476 0.6896067415730337 0.7916666666666666 0.6952247191011236 0.7916666666666666 0.7303370786516854 0.7166666666666667 0.7247191011235955
0 0.8035714285714286 0.6867977528089888 0.8738095238095238 0.7191011235955056 0.8904761904761904 0.6882022471910112 0.8154761904761905 0.6544943820224719
0 0.1988095238095238 0.5351123595505618 0.26785714285714285 0.5337078651685393 0.26904761904761904 0.5688202247191011 0.19523809523809524 0.5646067415730337
0 0.2011904761904762 0.800561797752809 0.2630952380952381 0.7949438202247191 0.26071428571428573 0.8314606741573034 0.20238095238095238 0.8300561797752809

模型配置如下:

#Parameters
nc: 1  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32#Backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]#Head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

默认100次的迭代训练,日志输出如下:

接下来看下结果详情:

【F1值曲线】

【PR曲线】

【数据可视化】

【混淆矩阵】

batch计算实例:

模型评估结果如下:

Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100%|??????????| 94/94 [01:59<00:00,  1.all       3000      53267      0.974      0.957      0.988      0.699      0.961       0.94      0.972      0.575

从性能指标上来看效果还是蛮不错的。

这篇关于基于YOLO开发构建红外场景下无人机航拍车辆实例分割检测识别分析系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/792554

相关文章

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

TP-LINK/水星和hasivo交换机怎么选? 三款网管交换机系统功能对比

《TP-LINK/水星和hasivo交换机怎么选?三款网管交换机系统功能对比》今天选了三款都是”8+1″的2.5G网管交换机,分别是TP-LINK水星和hasivo交换机,该怎么选呢?这些交换机功... TP-LINK、水星和hasivo这三台交换机都是”8+1″的2.5G网管交换机,我手里的China编程has