Chapter 1 (Linear Equations in Linear Algebra): Solution sets of linear systems

2024-03-09 08:59

本文主要是介绍Chapter 1 (Linear Equations in Linear Algebra): Solution sets of linear systems,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文为《Linear algebra and its applications》的读书笔记

目录

  • Homogeneous Linear Systems
  • Parametric Vector Form
  • Solutions of Nonhomogeneous Systems

Homogeneous Linear Systems

齐次线性方程组

  • A system of linear equations is said to be homogeneous if it can be written in the form A x = 0 A\boldsymbol x = \boldsymbol0 Ax=0, where A A A is an m × n m \times n m×n matrix and 0 \boldsymbol0 0 is the zero vector in R m \mathbb{R^m} Rm.
  • Such a system A x = 0 A\boldsymbol x = \boldsymbol0 Ax=0 always has at least one solution, namely, x = 0 \boldsymbol x = \boldsymbol0 x=0 (the zero vector in R n \mathbb{R^n} Rn. This zero solution is usually called the trivial solution (平凡解). For a given equation A x = 0 A\boldsymbol x = \boldsymbol0 Ax=0; the important question is whether there exists a nontrivial solution (非平凡解), that is, a nonzero vector x \boldsymbol x x that satisfies A x = 0 A\boldsymbol x = \boldsymbol0 Ax=0

  • The Existence and Uniqueness Theorem in Section 1.2 leads immediately to the following fact:
    • The homogeneous equation A x = 0 A\boldsymbol x = \boldsymbol0 Ax=0 has a nontrivial solution if and only if the equation has at least one free variable.

区别:
A A A 的每个列都是主元列时, A x = 0 A\boldsymbol x = \boldsymbol0 Ax=0 A x = b A\boldsymbol x = \boldsymbol b Ax=b 有唯一解 (假设 A x = b A\boldsymbol x = \boldsymbol b Ax=b 有解)
A A A 的每行都有主元时, A x = b A\boldsymbol x = \boldsymbol b Ax=b 对任意 b \boldsymbol b b 均有解


补充 ( A A A m × n m\times n m×n 的矩阵):

  • A x = b A\boldsymbol x = \boldsymbol b Ax=b 有解 ⇔ \Leftrightarrow r a n k ( [ A b ] ) = r a n k ( A ) rank([A\ \ \boldsymbol b])=rank(A) rank([A  b])=rank(A)
  • A x = b A\boldsymbol x = \boldsymbol b Ax=b 有唯一解 ⇔ \Leftrightarrow r a n k ( [ A b ] ) = r a n k ( A ) = n rank([A\ \ \boldsymbol b])=rank(A)=n rank([A  b])=rank(A)=n
  • A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0 有非零解 (只有零解) ⇔ \Leftrightarrow r a n k ( A ) < n rank(A)<n rank(A)<n ( r a n k ( A ) = n rank(A)=n rank(A)=n)

EXAMPLE 1

Determine if the following homogeneous system has a nontrivial solution. Then describe the solution set.
在这里插入图片描述
SOLUTION

在这里插入图片描述在这里插入图片描述

  • As a vector, the general solution of A x = 0 A\boldsymbol x = \boldsymbol0 Ax=0 has the form
    在这里插入图片描述
  • This shows that every solution of A x = 0 A\boldsymbol x = \boldsymbol0 Ax=0 in this case is a scalar multiple of v \boldsymbol v v. The trivial solution is obtained by choosing x 3 = 0 x_3 = 0 x3=0: Geometrically, the solution set is a line through 0 \boldsymbol 0 0 in R 3 \mathbb{R^3} R3.
    在这里插入图片描述

EXAMPLE 2

A single linear equation can be treated as a very simple system of equations. Describe all solutions of the homogeneous “system”
10 x 1 − 3 x 2 − 2 x 3 = 0 ( 1 ) 10x_1-3x_2-2x_3=0\ \ \ \ \ \ \ (1) 10x13x22x3=0       (1)
SOLUTION

  • The general solution is x 1 = . 3 x 2 + . 2 x 3 x_1 = .3x_2 + .2x_3 x1=.3x2+.2x3, with x 2 x_2 x2 and x 3 x_3 x3 free. As a vector, the general solution is
    在这里插入图片描述
  • This calculation shows that every solution is a linear combination of the vectors u \boldsymbol u u and v \boldsymbol v v. That is, the solution set is Span{ u , v \boldsymbol u,\boldsymbol v u,v}. Since neither u \boldsymbol u u nor v \boldsymbol v v is a scalar multiple of the other, the solution set is a plane through the origin. See Figure 2.
    在这里插入图片描述
  • Examples 1 and 2 illustrate the fact that the solution set of a homogeneous equation A x = 0 A\boldsymbol x = \boldsymbol0 Ax=0 can always be expressed explicitly as Span{ v 1 , . . . , v p \boldsymbol v_1,..., \boldsymbol v_p v1,...,vp} for suitable vectors v 1 , . . . , v p \boldsymbol v_1,..., \boldsymbol v_p v1,...,vp.
    • If the only solution is the zero vector, then the solution set is Span{ 0 \boldsymbol 0 0}.
    • If the equation A x = 0 A\boldsymbol x = \boldsymbol0 Ax=0 has only one free variable, the solution set is a line through the origin, as in Figure 1.
    • A plane through the origin, as in Figure 2, provides a good mental image for the solution set of A x = 0 A\boldsymbol x = \boldsymbol0 Ax=0 when there are two or more free variables.

Parametric Vector Form

参数向量形式

  • The original equation (1) for the plane in Example 2 is an i m p l i c i t implicit implicit description of the plane. Solving this equation amounts to finding an e x p l i c i t explicit explicit description of the plane as the set spanned by u \boldsymbol u u and v \boldsymbol v v. Equation (2) is called a parametric vector equation of the plane. Sometimes such an equation is written as
    x = s u + t v ( s , t i n R ) \boldsymbol x = s\boldsymbol u+t\boldsymbol v\ \ \ (s,t\ in\ \mathbb{R}) x=su+tv   (s,t in R)
    • In Example 1, the equation x = t v \boldsymbol x = t \boldsymbol v x=tv (with t t t in R \mathbb R R), is a parametric vector equation of a line.
  • Whenever a solution set is described explicitly with vectors as in Examples 1 and 2, we say that the solution is in parametric vector form.

通过将解写为参数向量形式,可以清楚的描述出解的几何分布情况 (直线、平面、点)

Solutions of Nonhomogeneous Systems

  • When a nonhomogeneous linear system has many solutions, the general solution can be written in parametric vector form as one vector plus an arbitrary linear combination of vectors that satisfy the corresponding homogeneous system.

EXAMPLE 3

Describe all solutions of A x = b A\boldsymbol x = \boldsymbol b Ax=b, where
在这里插入图片描述
SOLUTION

  • Here A A A is the matrix of coefficients from Example 1.
    在这里插入图片描述在这里插入图片描述
  • The equation
    x = p + t v ( t i n R ) ( 3 ) \boldsymbol x= \boldsymbol p+t \boldsymbol v\ \ \ \ (t\ in\ \mathbb{R})\ \ \ \ \ \ (3) x=p+tv    (t in R)      (3)describes the solution set of A x = b A\boldsymbol x = \boldsymbol b Ax=b in parametric vector form. Recall from Example 1 that the solution set of A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0 has the parametric vector equation
    x = t v ( t i n R ) ( 4 ) \boldsymbol x= t \boldsymbol v\ \ \ \ (t\ in\ \mathbb{R})\ \ \ \ \ \ (4) x=tv    (t in R)      (4)[with the same v \boldsymbol v v]. Thus the solutions of A x = b A\boldsymbol x = \boldsymbol b Ax=b are obtained by adding the vector p \boldsymbol p p to the solutions of A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0. The vector p \boldsymbol p p itself is just one particular solution of A x = b A\boldsymbol x = \boldsymbol b Ax=b [corresponding to t = 0 t = 0 t=0 in (3)].

  • To describe the solution set of A x = b A\boldsymbol x = \boldsymbol b Ax=b geometrically, we can think of vector addition as a t r a n s l a t i o n ( 平 移 ) translation (平移) translation(). Given v \boldsymbol v v and p \boldsymbol p p in R 2 \mathbb{R^2} R2 or R 3 \mathbb{R^3} R3, the effect of adding p \boldsymbol p p to v \boldsymbol v v is to move v \boldsymbol v v in a direction parallel to the line through p \boldsymbol p p and 0 \boldsymbol 0 0. We say that v \boldsymbol v v is translated by p \boldsymbol p p to v \boldsymbol v v + + + p \boldsymbol p p. See Figure 3.
    在这里插入图片描述
  • If each point on a line L L L in R 2 \mathbb{R^2} R2 or R 3 \mathbb{R^3} R3 is t r a n s l a t e d translated translated by a vector p \boldsymbol p p, the result is a line parallel to L L L. See Figure 4.
    在这里插入图片描述
  • Suppose L L L is the line through 0 \boldsymbol 0 0 and v \boldsymbol v v, described by equation (4). Adding p \boldsymbol p p to each point on L L L produces the translated line described by equation (3). Note that p \boldsymbol p p is on the line in equation (3). We call (3) the equation of the line through p \boldsymbol p p parallel to v \boldsymbol v v (通过 p \boldsymbol p p 平行于 v \boldsymbol v v 的直线方程). Thus the solution set of A x = b A\boldsymbol x = \boldsymbol b Ax=b is a line through p \boldsymbol p p parallel to the solution set of A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0. Figure 5 illustrates this case.
    在这里插入图片描述
  • The relation between the solution sets of A x = b A\boldsymbol x = \boldsymbol b Ax=b and A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0 shown in Figure 5 generalizes to any consistent equation A x = b A\boldsymbol x = \boldsymbol b Ax=b, although the solution set will be larger than a line when there are several free variables. The following theorem gives the precise statement.

在这里插入图片描述

W a r n i n g Warning Warning: Theorem 6 and Figure 6 apply only to an equation A x = b A\boldsymbol x = \boldsymbol b Ax=b that has at least one nonzero solution p \boldsymbol p p. When A x = b A\boldsymbol x = \boldsymbol b Ax=b has no solution, the solution set is empty.

PROOF

  • Suppose p \boldsymbol p p satisfies A x = b A\boldsymbol x = \boldsymbol b Ax=b. Then A p = b A\boldsymbol p = \boldsymbol b Ap=b. Theorem 6 says that the solution set of A x = b A\boldsymbol x = \boldsymbol b Ax=b equals the set S = { w : w = p + v h f o r s o m e v h s u c h t h a t A v h = 0 } S = \{\boldsymbol w : \boldsymbol w = \boldsymbol p +\boldsymbol v_h\ for\ some\ \boldsymbol v_h\ such\ that\ A\boldsymbol v_h = \boldsymbol 0\} S={w:w=p+vh for some vh such that Avh=0}. There are two things to prove: (a) every vector in S S S satisfies A x = b A\boldsymbol x = \boldsymbol b Ax=b, (b) every vector that satisfies A x = b A\boldsymbol x = \boldsymbol b Ax=b is in S S S.
    在这里插入图片描述

  • Theorem 6 says that if A x = b A\boldsymbol x = \boldsymbol b Ax=b has a solution, then the solution set is obtained by translating the solution set of A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0, using any particular solution p \boldsymbol p p of A x = b A\boldsymbol x = \boldsymbol b Ax=b for the translation. Figure 6 illustrates the case in which there are two free variables.
    在这里插入图片描述
  • Theorem 6 also indicates that the number of free variables in A x = b A\boldsymbol x = \boldsymbol b Ax=b depends only on A A A, not on b \boldsymbol b b.

C h e c k p o i n t Checkpoint Checkpoint:
Let A A A be a 2 × 2 2 \times 2 2×2 matrix. Answer True or False: If the solution set of A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0 is a line through the origin in R 2 \mathbb R^2 R2 and if b ≠ 0 b \neq 0 b=0, then the solution set of A x = b A\boldsymbol x = \boldsymbol b Ax=b is a line not through the origin

SOLUTION

  • False. The solution set could be empty. In this case, the solution set of A x = b A\boldsymbol x = \boldsymbol b Ax=b is not produced by translating the (nonempty) solution set of A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0. See the Warning after Theorem 6.

这篇关于Chapter 1 (Linear Equations in Linear Algebra): Solution sets of linear systems的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/790177

相关文章

理解分类器(linear)为什么可以做语义方向的指导?(解纠缠)

Attribute Manipulation(属性编辑)、disentanglement(解纠缠)常用的两种做法:线性探针和PCA_disentanglement和alignment-CSDN博客 在解纠缠的过程中,有一种非常简单的方法来引导G向某个方向进行生成,然后我们通过向不同的方向进行行走,那么就会得到这个属性上的图像。那么你利用多个方向进行生成,便得到了各种方向的图像,每个方向对应了很多

Chapter 13 普通组件的注册使用

欢迎大家订阅【Vue2+Vue3】入门到实践 专栏,开启你的 Vue 学习之旅! 文章目录 前言一、组件创建二、局部注册三、全局注册 前言 在 Vue.js 中,组件是构建应用程序的基本单元。本章详细讲解了注册和使用 Vue 的普通组件的两种方式:局部注册和全局注册。 本篇文章参考黑马程序员 一、组件创建 ①定义 Vue 组件是一种具有特定功能的 Vue 实

AtCoder Beginner Contest 370 Solution

A void solve() {int a, b;qr(a, b);if(a + b != 1) cout << "Invalid\n";else Yes(a);} B 模拟 void solve() {qr(n);int x = 1;FOR(i, n) FOR(j, i) qr(a[i][j]);FOR(i, n) x = x >= i ? a[x][i]: a[i][x];pr2(

Chapter 10 Stability and Frequency Compensation

Chapter 10 Stability and Frequency Compensation Chapter 8介绍了负反馈, 这一章介绍稳定性, 如果设计不好, 负反馈系统是要发生震荡的. 首先我们学习理解稳定判断标准和条件, 然后学习频率补偿, 介绍适用于不同运放的补偿方式, 同时介绍不同补偿对两级运放slew rate的影响, 最后介绍Nyquist’s判断标准 10.1 Gener

【CSS渐变】背景中的百分比:深入理解`linear-gradient`,进度条填充

在现代网页设计中,CSS渐变是一种非常流行的视觉效果,它为网页背景或元素添加了深度和动态感。linear-gradient函数是实现线性渐变的关键工具,它允许我们创建从一种颜色平滑过渡到另一种颜色的视觉效果。在本篇博客中,我们将深入探讨linear-gradient函数中的百分比值,特别是像#C3002F 50%, #e8e8e8 0这样的用法,以及它们如何影响渐变效果。 什么是linear-g

[学习笔记]《CSAPP》深入理解计算机系统 - Chapter 3 程序的机器级表示

总结一些第三章的一些关键信息 Chapter 3 程序的机器级表示结构 updating... Chapter 3 程序的机器级表示 局部变量通常保存在寄存器中,而不是内存中,访问寄存器比内存快的多. 有些时候,局部数据必须存放在内存中, 寄存器不足够存放所有的本地数据对一个局部变量使用地址运算符 &, 因此必须能够为它产生一个地址某些局部变量是数组或结构,因此必须能够通过数组或

阅读笔记(四)NoSQL的选择指引《NoSQL database systems: a survey and decision guidance》

一. 前言   《NoSQL database systems: a survey and decision guidance》是一篇很好的综述类论文,详细的论述了NoSQL的特点和各种不同NoSQL数据库的选择依据。   传统的关系型数据库(relational database management systems ,RDBMSs)可以在保证一致性、可靠性、稳定性的前提下提供强有力的数据存储

CodeForces 425E Sereja and Sets

题意: 集合S中包含许多区间[l,r]  且1<=l<=r<=n  f(S)表示该集合最多可以选出多少个不相交的区间  问给出n和f(S)  有几种可能的S集合 思路: dp好题  至于为啥是dp…  我只能说是胖子大神教我的 - -b 定义 dp[i][j] 表示当n=i且f(S)=j时的S集合种类数  那么它可以通过dp[k][j-1]求得  j-1<=k<=i 可以这样理解转

Chapter 10 async函数 await关键字

欢迎大家订阅【Vue2+Vue3】入门到实践 专栏,开启你的 Vue 学习之旅! 文章目录 前言一、async 函数二、await 关键字 前言 在现代 JavaScript 开发中,异步编程是一个重要的概念。随着 ES2017 的引入,async 函数和 await 关键字为处理异步操作提供了更简洁和可读的方式。本章详细讲解了这两个关键字的特性及其用法。 一、