[题目通道](【MX-J2-T0】Turtle and Equations - 洛谷) #include<bits/stdc++.h>#define int long long#define fast register intusing namespace std;const int N=2e5+10,MOD=1e9+7;int a,b,c,d; signed main(){std::ios
二阶线性方程 Laplace 变换求解 在这一节中,我们将拉普拉斯变换方法扩展到二阶常系数强迫线性方程,即具有以下形式的方程: d 2 y d t 2 + p d y d t + q y = f ( t ) , \frac{d^2 y}{dt^2} + p \frac{dy}{dt} + qy = f(t), dt2d2y+pdtdy+qy=f(t), 其中 p p p 和 q q
平衡点分析 从第3章的工作中,我们能够对线性系统的解有定性和解析的理解。不幸的是,非线性系统通常不容易使用我们开发的解析和代数技术来分析,但我们可以利用线性系统的数学来理解非线性系统在其平衡点附近的行为。 Van der Pol 方程 为了说明如何分析平衡点附近解的行为,我们从一个简单但重要的非线性系统——Van der Pol 系统开始。回顾一下,Van der Pol 系统是: d x
稳态的振幅和相位系统 在本节中,我们回到方程 d 2 y d t 2 + p d y d t + q y = cos ω t \frac{d^2 y}{dt^2} + p \frac{dy}{dt} + qy = \cos \omega t dt2d2y+pdtdy+qy=cosωt 用于周期性强迫的阻尼谐振子。我们的目标是建立解决方案行为与参数之间的定量关系——特别是决定强迫频率
特殊情况: 重根和零特征值的线性系统 在前面的三节中,我们讨论了线性系统 d Y d t = A Y \frac{dY}{dt} = AY dtdY=AY 其中 2 × 2 2 \times 2 2×2 矩阵 A A A 具有两个不同的非零实特征值或一对复共轭特征值。在这些情况下,我们能够使用特征值和特征向量来草绘 x y xy xy 相平面的解,绘制 x ( t ) x(t)
//引用冬月之神的帖子,尊重原创,传送门 Equations Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 899 Accepted Submission(s): 356 Problem Description
本文为《Linear algebra and its applications》的读书笔记 目录 Homogeneous Linear SystemsParametric Vector FormSolutions of Nonhomogeneous Systems Homogeneous Linear Systems 齐次线性方程组 A system of linear
Colossal! — exclaimed Hawk-nose. — A programmer! That's exactly what we are looking for. Arkadi and Boris Strugatsky. Monday starts on Saturday Reading the book "Equations of Mathematical Magic" Rom
Problem Given an array equations of strings that represent relationships between variables, each string equations[i] has length 4 and takes one of two different forms: “a==b” or “a!=b”. Here, a and b
论文阅读:Multi-Grade Deep Learning for Partial Differential Equations with Applications to the Burgers Equation Multi-Grade Deep Learning for Partial Differential Equations with Applications to the Bur